AI菜谱一步直达服务:基于鸿蒙跨端技术的智能厨房解决方案
智能厨房平台提供一键式烹饪解决方案 #生活知识# #科技生活# #科技美食#
AI菜谱一步直达服务:基于鸿蒙跨端技术的智能厨房解决方案
系统概述
AI菜谱一步直达服务利用手机摄像头识别冰箱内食材,通过鸿蒙分布式技术协同多设备,实现食材识别、菜谱推荐、烹饪指导的一站式服务。该系统创新性地将计算机视觉与知识图谱技术相结合,打造智能化的厨房体验。
系统架构与核心技术
多设备协作流程:
手机:食材拍照识别
智慧屏:展示推荐菜谱和烹饪视频
智能音箱:语音指导烹饪步骤
关键技术点:
多模态物体检测(YOLOv5+CLIP)
食材-菜谱知识图谱
跨设备任务调度
分布式状态同步
代码实现
分布式服务管理(核心模块)
public class RecipeDistributedService extends Ability {
private static final String TAG = “RecipeService”;
private DistributedDataManager dataManager;
private KnowledgeGraph kg;
@Override public void onStart(Intent intent) { super.onStart(intent); initDistributedEnv(); loadKnowledgeGraph(); 1.2.3.4.5.
private void initDistributedEnv() {
// 初始化分布式能力 dataManager = DistributedDataManager.getInstance(this); // 注册数据变化监听 dataManager.registerDataChangeListener(new DataChangeListener() { @Override public void onDataChanged(String key, String value) { if (key.equals("ingredients_detected")) { processIngredients(value); 1.2.3.4.5.6.7.8.9.
else if (key.equals(“recipe_selected”)) {
dispatchCookingTask(value); 1.
}
}); 1.
private void loadKnowledgeGraph() {
// 加载预构建的食材-菜谱知识图谱 kg = new KnowledgeGraph(this); kg.loadFromAsset("recipe_kg.bin"); 1.2.3.
private void processIngredients(String ingredientsJson) {
// 解析识别到的食材 Ingredient[] ingredients = new Gson().fromJson( ingredientsJson, Ingredient[].class); // 查询知识图谱获取推荐菜谱 List<Recipe> recipes = kg.queryRecipes(ingredients); // 同步到智慧屏展示 syncToSmartScreen(recipes); 1.2.3.4.5.6.7.8.9.
private void syncToSmartScreen(List<Recipe> recipes) {
String json = new Gson().toJson(recipes); dataManager.putString("recommended_recipes", json); 1.2.
private void dispatchCookingTask(String recipeJson) {
// 解析选定的菜谱 Recipe recipe = new Gson().fromJson(recipeJson, Recipe.class); // 分配任务到各设备 dataManager.putString("cooking_steps", recipe.getStepsJson()); dataManager.putString("video_guide", recipe.getVideoUrl()); 1.2.3.4.5.6.
}
手机端食材识别模块
public class IngredientDetectionAbility extends Ability {
private static final String TAG = “IngredientDetection”;
private DistributedDataManager dataManager;
private FoodDetectionModel detectionModel;
@Override public void onStart(Intent intent) { super.onStart(intent); initDetectionModel(); setupCamera(); 1.2.3.4.5.
private void initDetectionModel() {
// 加载轻量化食材检测模型 detectionModel = new FoodDetectionModel(this); detectionModel.loadModel("yolov5s_food.tflite"); 1.2.3.
private void setupCamera() {
SurfaceProvider provider = new SurfaceProvider(this); provider.setSurfaceCallback(new SurfaceCallback() { @Override public void surfaceCreated(Surface surface) { CameraConfig config = new CameraConfig.Builder() .setSurface(surface) .setFrameCallback(frame -> { Bitmap bitmap = frameToBitmap(frame); detectIngredients(bitmap); }) .build(); CameraKit.getInstance().openCamera(config); 1.2.3.4.5.6.7.8.9.10.11.12.13.
});
private void detectIngredients(Bitmap bitmap) {
// 执行食材检测 DetectionResult[] results = detectionModel.detect(bitmap); // 过滤食材结果(置信度>0.7) List<Ingredient> ingredients = Arrays.stream(results) .filter(r -> r.getConfidence() > 0.7) .map(r -> new Ingredient( r.getLabel(), r.getConfidence(), estimateQuantity(r.getBoundingBox()) )) .collect(Collectors.toList()); if (!ingredients.isEmpty()) { // 同步到分布式服务 String json = new Gson().toJson(ingredients); dataManager.putString("ingredients_detected", json); 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.
}
private float estimateQuantity(Rect boundingBox) { // 基于边界框大小估算食材数量(简化实现) return boundingBox.width() * boundingBox.height() / 10000f; 1.2.3.
}
智慧屏菜谱展示模块
public class RecipeDisplayAbility extends Ability {
private DistributedDataManager dataManager;
private MediaPlayer videoPlayer;
@Override public void onStart(Intent intent) { super.onStart(intent); initUIComponents(); initDistributedListener(); 1.2.3.4.5.
private void initDistributedListener() {
dataManager = DistributedDataManager.getInstance(this); dataManager.registerDataChangeListener(new DataChangeListener() { @Override public void onDataChanged(String key, String value) { if (key.equals("recommended_recipes")) { showRecipeList(value); 1.2.3.4.5.6.
else if (key.equals(“video_guide”)) {
playGuideVideo(value); 1.
}
}); 1.
private void showRecipeList(String recipesJson) {
Recipe[] recipes = new Gson().fromJson(recipesJson, Recipe[].class); getUITaskDispatcher().asyncDispatch(() -> { ListContainer list = findComponentById(ResourceTable.Id_recipe_list); RecipeItemProvider provider = new RecipeItemProvider(recipes); list.setItemProvider(provider); // 设置点击监听 list.setItemClickedListener((listContainer, component, position, id) -> { selectRecipe(recipes[position]); }); }); 1.2.3.4.5.6.7.8.9.10.11.12.
private void selectRecipe(Recipe recipe) {
// 通知系统用户选择了某个菜谱 String json = new Gson().toJson(recipe); dataManager.putString("recipe_selected", json); 1.2.3.
private void playGuideVideo(String videoUrl) {
videoPlayer.setSource(videoUrl); videoPlayer.prepare(); videoPlayer.play(); 1.2.3.
}
智能音箱烹饪指导模块
public class CookingGuideAbility extends Ability {
private DistributedDataManager dataManager;
private TtsEngine ttsEngine;
private int currentStep = 0;
@Override public void onStart(Intent intent) { super.onStart(intent); initTtsEngine(); initDistributedListener(); 1.2.3.4.5.
private void initDistributedListener() {
dataManager = DistributedDataManager.getInstance(this); dataManager.registerDataChangeListener(new DataChangeListener() { @Override public void onDataChanged(String key, String value) { if (key.equals("cooking_steps")) { prepareGuidance(value); 1.2.3.4.5.6.
}
}); 1.
private void prepareGuidance(String stepsJson) {
CookingStep[] steps = new Gson().fromJson(stepsJson, CookingStep[].class); // 开始逐步指导 guideStepByStep(steps); 1.2.3.4.
private void guideStepByStep(CookingStep[] steps) {
if (currentStep < steps.length) { CookingStep step = steps[currentStep]; // 语音播报当前步骤 ttsEngine.speak(step.getDescription(), TtsEngine.QUEUE_FLUSH, null); // 设置定时器进入下一步 Timer timer = new Timer(); timer.schedule(new TimerTask() { @Override public void run() { currentStep++; guideStepByStep(steps); 1.2.3.4.5.6.7.8.9.10.11.12.13.
}, step.getDuration() * 1000);
}
关键技术解析
多模态食材识别:
# Python端的融合识别算法(部署为HarmonyOS原子化服务) 1.
def enhanced_food_detection(image):
# 使用YOLOv5检测食材边界框
detections = yolov5_model(image)
# 使用CLIP模型验证和细化分类 clip_features = clip_model.encode_image(image) for det in detections: text_features = clip_model.encode_text(f"a photo of {det.label}") similarity = cosine_similarity(clip_features, text_features) if similarity < 0.3: # 验证阈值 det.label = "unknown" return detections 1.2.3.4.5.6.7.8.9.
知识图谱查询优化:
// 知识图谱查询实现 1.
public List<Recipe> queryRecipes(Ingredient[] ingredients) {
// 提取食材名称
String[] names = Arrays.stream(ingredients)
.map(Ingredient::getName)
.toArray(String[]::new);
// 查询包含任意3种食材的菜谱 String query = "MATCH (r:Recipe)-[:CONTAINS]->(i:Ingredient) " + "WHERE i.name IN $names " + "WITH r, COUNT(i) AS matches " + "WHERE matches >= 3 " + "RETURN r ORDER BY matches DESC LIMIT 5"; return neo4jClient.query(query, Map.of("names", names)); 1.2.3.4.5.6.7.8.
跨设备同步优化:
// 基于网络状况的自适应同步策略 1.
public void optimizeDataSync() {
NetworkState state = NetworkManager.getCurrentState();
// 根据网络质量调整同步策略 SyncPolicy policy = new SyncPolicy() .setCompression(state != NetworkState.EXCELLENT) .setPriority(SyncPriority.HIGH) .setRetryCount(state == NetworkState.POOR ? 3 : 1); dataManager.setSyncPolicy("recommended_recipes", policy); 1.2.3.4.5.6.7.
与游戏昵称同步技术的关联创新
状态同步机制:
借鉴游戏中的玩家状态同步策略,实现烹饪步骤的跨设备同步
采用类似的分布式数据版本控制保证各设备状态一致
设备角色分配:
// 类似游戏中的角色分配逻辑 1.
public void assignDeviceRoles() {
List<DeviceInfo> devices = DeviceManager.getConnectedDevices();
devices.forEach(device -> { String role = switch(device.getType()) { case PHONE -> "detector"; case TV -> "display"; case SPEAKER -> "guide"; default -> "viewer"; }; dataManager.putString(device.getId(), "assigned_role", role); }); 1.2.3.4.5.6.7.8.9.10.
实时性保障:
关键数据(如步骤切换)采用即时同步
非关键数据(如菜谱图片)采用后台异步同步
系统特色功能
智能替代推荐:
public List<Ingredient> findSubstitutes(Ingredient ingredient) { // 在知识图谱中查询可替代食材 return kg.query("MATCH (i1:Ingredient {name: $name})-[:CAN_REPLACE]->(i2) " + "RETURN i2 ORDER BY i2.similarity DESC LIMIT 3", Map.of("name", ingredient.getName())); 1.2.3.4.5.
营养分析:
def analyze_nutrition(recipe): total_calories = sum(ingredient.calories for ingredient in recipe.ingredients) nutrition_tags = [] if total_calories < 400: nutrition_tags.append("低卡") if any(i for i in recipe.ingredients if i.is_high_protein): nutrition_tags.append("高蛋白") return NutritionInfo(total_calories, nutrition_tags) 1.2.3.4.5.6.7.8.9.10.
多用户协作:
支持多个手机同时扫描不同区域的食材
合并所有用户的检测结果生成综合推荐
该AI菜谱一步直达服务系统充分展现了鸿蒙分布式技术的优势,将原本分散的厨房设备整合为智能协同的整体,为智能家居场景提供了创新解决方案。通过借鉴游戏中的状态同步和角色分配机制,实现了厨房场景下的无缝多设备协作体验。
网址:AI菜谱一步直达服务:基于鸿蒙跨端技术的智能厨房解决方案 https://www.yuejiaxmz.com/news/view/1044598
相关内容
用AI重塑居家健康空气体验,新一代华为鸿蒙智家解决方案发布方太智能厨房整体解决方案,为智能厨房生态赋能
HarmonyOS鸿蒙OS“智慧家庭” 华为智能家居技术的未来
重构家庭能源观:华为鸿蒙智家全屋主动节能解决方案的科技革命与生活实践
在AWE2025体验AI高智感生活,华为鸿蒙智家引领空间智能产业新风尚
华为发布新一代鸿蒙智家解决方案
华为发布新一代鸿蒙智家解决方案:主动健康空气、后装改造再升级
华为AI新一代鸿蒙智家带来健康空气后装解决方案:让生活更健康更便捷
探秘华为鸿蒙智家:AI赋能的全场景智慧生活体验
基于开源鸿蒙(OpenHarmony)的【智能家居综合应用】系统