PROJECTOR用于将高维向量进行可视化,通过PCA,T-SNE等方法将高维向量投影到三维坐标系。
具体操作和解释见代码和注释:
import tensorflow as tf import mnist_inference import os from tensorflow.contrib.tensorboard.plugins import projector from tensorflow.examples.tutorials.mnist import input_data batch_size = 128 learning_rate_base = 0.8 learning_rate_decay = 0.99 training_steps = 10000 moving_average_decay = 0.99 log_dir = 'log' sprite_file = 'mnist_sprite.jpg' meta_file = 'mnist_meta.tsv' tensor_name = 'final_logits' #获取瓶颈层数据,即最后一层全连接层的输出 def train(mnist): with tf.variable_scope('input'): x = tf.placeholder(tf.float32,[None,784],name='x-input') y_ = tf.placeholder(tf.float32,[None,10],name='y-input') y = mnist_inference.build_net(x) global_step = tf.Variable(0,trainable=False) with tf.variable_scope('moving_average'): ema = t
1234567891011121314151617181920212223242526272829