Review on the control and mitigation strategies of lake cyanobacterial blooms

发布时间:2024-12-05 15:20

猫牛呼吸法(Breathing of the Cat and Cow)通过调整呼吸节奏,促进深度睡眠。 #生活技巧# #健康生活方式# #睡眠调整技巧# #瑜伽助眠#

[1]

Huisman J, Codd GA, Paerl HW et al. Cyanobacterial blooms. Nature Reviews Microbiology, 2018, 16(8): 471-483. DOI:10.1038/s41579-018-0040-1

[2]

Ho JC, Michalak AM, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 2019, 574(7780): 667-670. DOI:10.1038/s41586-019-1648-7

[3]

Dunalska JA. How the integrated engineering solutions can support the lakes restoration?. Ecohydrology & Hydrobiology, 2021, 21(1): 36-45. DOI:10.1016/j.ecohyd.2020.06.004

[4]

Kong FX, Song LR. Algal blooms process and its environmental characteristics. Beijing: Science Press, 2011. [孔繁翔, 宋立荣. 蓝藻水华形成过程及其环境特征研究. 北京: 科学出版社, 2011.]

[5]

Downing JA, Watson SB, McCauley E. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(10): 1905-1908. DOI:10.1139/cjfas-58-10-1905

[6]

O'Farrell I, Motta C, Forastier M et al. Ecological meta-analysis of bloom-forming planktonic cyanobacteria in Argentina. Harmful Algae, 2019, 83: 1-13. DOI:10.1016/j.hal.2019.01.004

[7]

Xu H, Paerl HW, Qin BQ et al. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 2010, 55(1): 420-432. DOI:10.4319/lo.2010.55.1.0420

[8] [9]

Schindler DW. Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 1974, 184(4139): 897-899. DOI:10.1126/science.184.4139.897

[10] [11] [12]

Liang ZY, Soranno PA, Wagner T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Research, 2020, 185: 116236. DOI:10.1016/j.watres.2020.116236

[13]

Ma JR, Deng JM, Qin BQ et al. Progress and prospects on cyanobacteria bloom-forming mechanism in lakes. Acta Ecologica Sinica, 2013, 33(10): 3020-3030. [马健荣, 邓建明, 秦伯强等. 湖泊蓝藻水华发生机理研究进展. 生态学报, 2013, 33(10): 3020-3030. DOI:10.5846/stxb201202140200]

[14]

Scheffer M, Hosper SH, Meijer ML et al. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 1993, 8(8): 275-279. DOI:10.1016/0169-5347(93)90254-M

[15]

Scheffer M, Carpenter S, Foley JA et al. Catastrophic shifts in ecosystems. Nature, 2001, 413(6856): 591-596. DOI:10.1038/35098000

[16]

Scheffer M, Jeppesen E. Alternative stable states. In: Jeppesen E, Sondergaard M, Sondergaard M eds. Workshop on the structuring role of submerged macrophytes in lakes. Freshwater Ctr, Silkeborg, Denmark: 1996: 397-406.

[17]

Gonzalez SMA, Jeppesen E, Goma J et al. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations?. Freshwater Biology, 2005, 50(1): 27-41. DOI:10.1111/j.1365-2427.2004.01290.x

[18]

Jeppesen E, Søndergaard M, Søndergaard M. The structuring role of submerged macrophytes in lakes. New York: Springer, 1998. DOI:10.1007/978-1-4612-0695-8

[19] [20]

Gao YM, Yin CY, Zhao Y et al. Effects of diversity, coverage and biomass of submerged macrophytes on nutrient concentrations, water clarity and phytoplankton biomass in two restored shallow lakes. Water, 2020, 12(5): 1425. DOI:10.3390/w12051425

[21]

Liu CY, Liu PP, Liu ZW et al. Study on the functions of submerged macrophytes in ecological restoration and water quality improvement. Journal of Anhui Agricultural Sciences, 2008, 36(7): 2908-2910. [刘从玉, 刘平平, 刘正文等. 沉水植物在生态修复和水质改善中的作用——以惠州南湖生态系统的修复与构建(中试)工程为例. 安徽农业科学, 2008, 36(7): 2908-2910. DOI:10.3969/j.issn.0517-6611.2008.07.126]

[22]

Liu YC, Yu JL, Chen L et al. Changes of submerged macrohhyte community structure and water quality in the process of ecosystem restoration of a shallow eutrophic lake. Ecological Science, 2008, 27(5): 376-379. [刘玉超, 于谨磊, 陈亮等. 浅水富营养化湖泊生态修复过程中大型沉水植物群落结构变化以及对水质影响. 生态科学, 2008, 27(5): 376-379. DOI:10.3969/j.issn.1008-8873.2008.05.020]

[23]

Lei ZX, Chen GR, Tan Z et al. Growth, competition and purification effect of three submersed aquatic macrophytes in eutrophic water. Journal of Hubei University: Natural Science Edition, 2009, 31(2): 192-196. [雷泽湘, 陈光荣, 谭镇等. 富营养水体中3种沉水植物的生长竞争及其净化效果. 湖北大学学报: 自然科学版, 2009, 31(2): 192-196. DOI:10.3969/j.issn.1001-2375.2009.02.021]

[24]

Shapiro J, Lamarra V, Lynch M. Biomanipulation: An ecosystem approach to lake restoration. In: Brezomik PL, Fox JL eds. Proceedings of a symposium on water quality management through biological control. Gainesville: University of Florida, 1975: 85-96.

[25]

McQueen DJ, Post JR, Mills EL. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 1986, 43(8): 1571-1581. DOI:10.1139/f86-195

[26]

McQueen DJ, Johannes MRS, Post JR et al. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs, 1989, 59(3): 289-309. DOI:10.2307/1942603

[27]

Jeppesen E, Sondergaard M, Mortensen E et al. Fish maniplation as a lake restoration tool in shallow, eutrophic temperate lakes 1: cross-analysis of three Danish case-studies. Hydrobiologia, 1990, 200: 205-218. DOI:10.1007/bf02530340

[28]

Yu JL, Liu ZW, He H et al. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: Implications for lake restoration. Hydrobiologia, 2016, 775(1): 97-107. DOI:10.1007/s10750-016-2717-7

[29]

Yu JL, Liu ZW, Li KY et al. Restoration of shallow lakes in subtropical and tropical China: Response of nutrients and water clarity to biomanipulation by fish removal and submerged plant transplantation. Water, 2016, 8(10): 438. DOI:10.3390/w8100438

[30]

Xie P. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method. Chinese Journal of Oceanology and Limnology, 1996, 14(3): 193-204. DOI:10.1007/BF02850380

[31]

Crisman TL, Beaver JR. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics. Hydrobiologia, 1990, 200/201(1): 177-185. DOI:10.1007/BF02530338

[32]

Li Y, Zhang JW, Wei J et al. Advances in mechanism of the occurrence, hazard, and prevention/control utilization of cyanophytic blooms in China. Journal of Micorobiology, 2015, 35(4): 93-97. [李媛, 张家卫, 魏杰等. 我国蓝藻水华的发生机理、危害及防控利用研究进展. 微生物学杂志, 2015, 35(4): 93-97.]

[33]

Yang LY, Yang XY, Ren LM et al. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu. J Lake Sci, 2019, 31(1): 18-27. [杨柳燕, 杨欣妍, 任丽曼等. 太湖蓝藻水华暴发机制与控制对策. 湖泊科学, 2019, 31(1): 18-27. DOI:10.18307/2019.0102]

[34]

Qin BQ, Wang XD, Tang XM et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in lake Taihu: Cause and measurement. Advances in Earth Science, 2007, 22(9): 896-906. [秦伯强, 王小冬, 汤祥明等. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策. 地球科学进展, 2007, 22(9): 896-906. DOI:10.3321/j.issn:1001-8166.2007.09.003]

[35]

Cullen P, Forsberg C. Experiences with reducing point sources of phosphorus to lakes. Hydrobiologia, 1988, 170(1): 321-336. DOI:10.1007/BF00024912

[36]

Uttormark PD, Hutchins ML. Input/output models as decision aids for lake restoration. Journal of the American Water Resources Association, 1980, 16(3): 494-500. DOI:10.1111/j.1752-1688.1980.tb03903.x

[37]

Edmondson WT. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science, 1970, 169(3946): 690-691. DOI:10.1126/science.169.3946.690

[38]

Istvánovics V, Somlyódy L, Clement A. Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Research, 2002, 36(13): 3314-3322. DOI:10.1016/S0043-1354(02)00036-2

[39]

Pu PM, Wang GX, Hu CH et al. Can we control lake eutrophication by dredging?. J Lake Sci, 2000, 12(3): 269-279. [濮培民, 王国祥, 胡春华等. 底泥疏浚能控制湖泊富营养化吗?. 湖泊科学, 2000, 12(3): 269-279. DOI:10.18307/2000.0312]

[40]

Fan CX, Zhong JC, Zhang L et al. Research progress and prospect of environmental dredging decision-making of lake sediment. J Lake Sci, 2020, 32(5): 1254-1277. [范成新, 钟继承, 张路等. 湖泊底泥环保疏浚决策研究进展与展望. 湖泊科学, 2020, 32(05): 1254-1277. DOI:10.18307/2020.0506]

[41]

Hu XZ, Jin XC, Lu SY et al. Techniques for sediment pollution control and discussion on the applicability in lakes of China. Engineering Sciences, 2009, 11(9): 28-33. [胡小贞, 金相灿, 卢少勇等. 湖泊底泥污染控制技术及其适用性探讨. 中国工程科学, 2009, 11(9): 28-33. DOI:10.3969/j.issn.1009-1742.2009.09.005]

[42]

Yang P, Yang CH, Ma XY et al. Sediment pollution characteristics and dredging in the Nanfei River Estuary, Chaohu Lake. Environmental Science, 2021, 42(2): 712-722. [杨盼, 杨春晖, 马鑫雨等. 巢湖南淝河河口底泥污染特征及疏浚决策. 环境科学, 2021, 42(2): 712-722. DOI:10.13227/j.hjkx.202005320]

[43]

Sun YJ, Lu SQ, Lin WQ et al. In-situ study on nutrient release fluxes from shallow lake sediments under wind-driven waves. Journal of Hydrodynamics, Ser B, 2016, 28(2): 247-254. DOI:10.1016/S1001-6058(16)60626-1

[44]

Jiang X, Wang SH, Zhang QB et al. Analysis of concepts, conditions and critical problems in environmental dredging. Research of Environmental Sciences, 2017, 30(10): 1497-1504. [姜霞, 王书航, 张晴波等. 污染底泥环保疏浚工程的理念·应用条件·关键问题. 环境科学研究, 2017, 30(10): 1497-1504.]

[45]

Liu LX, Han YW, Liu H et al. Dredging technology and its effect on the treatment of polluted water. Journal of Environmental Engineering Technology, 2020, 10(1): 63-71. [刘丽香, 韩永伟, 刘辉等. 疏浚技术及其对污染水体治理效果的影响. 环境工程技术学报, 2020, 10(1): 63-71.]

[46]

Gao Y, Luo RB, Liu C. Engineering application of dredging and ecological restoration technology in Xuanwu Lake. Jiangsu Water Resources, 2020(11): 48-51. [高扬, 罗荣彪, 刘成. 疏浚及生态修复技术在玄武湖的工程应用. 江苏水利, 2020(11): 48-51.]

[47]

Wang JF, Chen JA, Sun QQ et al. Effect of dredging on the sediment pollution in Aha reservoir. Environmental Engineering, 2018, 36(3): 69-73, 147. [王敬富, 陈敬安, 孙清清等. 底泥疏浚对阿哈水库内源污染的影响. 环境工程, 2018, 36(3): 69-73, 147. DOI:10.13205/j.hjgc.201803014]

[48]

Wan WJ, Zhang YN, Cheng GJ et al. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. Environmental Research, 2020, 188: 109799. DOI:10.1016/j.envres.2020.109799

[49]

Liu HQ. Environmental-protection dredging in treatment of lake pollution internal cause. Port & Waterway Engineering, 2000(11): 21-27. [柳惠青. 湖泊污染内源治理中的环保疏浚. 水运工程, 2000(11): 21-27.]

[50]

Zhu M, Wang GX, Wang J et al. Comparative analysis of changes of pollutants in sediment in Nanjing Xuanwu Lake before and after sediment dredging. Journal of Nanjing Normal University: Engineering and Technology, 2004, 4(2): 66-69. [朱敏, 王国祥, 王建等. 南京玄武湖清淤前后底泥主要污染指标的变化. 南京师范大学学报: 工程技术版, 2004, 4(2): 66-69.]

[51]

Zhang M, Shi XL, Yang Z et al. The variation of water quality from 2012 to 2018 in Lake Chaohu and the mitigating strategy on cyanobacterial blooms. J Lake Sci, 2020, 32(1): 11-20. [张民, 史小丽, 阳振等. 2012--2018年巢湖水质变化趋势分析和蓝藻防控建议. 湖泊科学, 2020, 32(1): 11-20. DOI:10.18307/2020.0102]

[52]

Zhong JC, Wen SL, Zhang L et al. Nitrogen budget at sediment-water interface altered by sediment dredging and settling particles: Benefits and drawbacks in managing eutrophication. Journal of Hazardous Materials, 2021, 406: 124691. DOI:10.1016/j.jhazmat.2020.124691

[53]

Zhang YH, Hu WP, Hu YM. Evaluation of artificial grooves for collecting bottom sediment pollutants in Lake Chaohu, China. Environmental Science and Pollution Research, 2021, 28(25): 32347-32358. DOI:10.1007/s11356-021-12889-8

[54]

Gulati RD, Pires LMD, van Donk E. Lake restoration studies: Failures, bottlenecks and prospects of new ecotechnological measures. Limnologica, 2008, 38(3/4): 233-247. DOI:10.1016/j.limno.2008.05.008

[55]

Hu WP. A new method for the reduction of the inner pollution loading and algae seeds in large shallow eutrophication lake. In: Association for the Sciences of Limnology and Oceanography. Victoria, 2018.

[56]

Li GH, Ye BB, Wu JD et al. Effect of in situ physical elution technology on release features of nitrogen and phosphorus in the sediment of Liangshui River. Chinese Journal of Environmental Engineering, 2020, 14(3): 671-680. [李国宏, 叶碧碧, 吴敬东等. 原位洗脱技术对凉水河底泥中氮、磷释放特征的影响. 环境工程学报, 2020, 14(3): 671-680.]

[57]

Shi RJ, Chen J, Jin ZK et al. Effect of in situ sediment remediation technology for treating polluted river course. Beijing Water, 2019(4): 10-14. [史瑞君, 陈静, 金泽康等. 底泥洗脱原位修复污染河道的治理效果. 北京水务, 2019(4): 10-14. DOI:10.19671/j.1673-4637.2019.04.003]

[58]

Li GH, Ye BB, Wu JD et al. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in situ physical elution. Research of Environmental Sciences, 2020, 33(2): 392-401. [李国宏, 叶碧碧, 吴敬东等. 底泥原位洗脱过程中氮磷含量与形态变化特征. 环境科学研究, 2020, 33(2): 392-401.]

[59]

Tang JZ, Song T, Jiang XY et al. International experiences for river pollution control. World Regional Studies, 1998, 7(2): 114-119. [汤建中, 宋韬, 江心英等. 城市河流污染治理的国际经验. 世界地理研究, 1998, 7(2): 114-119.]

[60]

Gao Y. Review of water eutrophication and control technology of alage blooming. Science and Technology Innovation Herald, 2014, 11(31): 1-3, 5. [高雅. 水体富营养化和水华的控制技术研究现状. 科技创新导报, 2014, 11(31): 1-3, 5.]

[61]

Yang HY, Wang JQ, Li JH et al. Modelling impacts of water diversion on water quality in an urban artificial lake. Environmental Pollution, 2021, 276: 116694. DOI:10.1016/j.envpol.2021.116694

[62]

Cooke GD. Restoration and management of lakes and reservoirs. Boca Raton, FL, USA: CRC Press, 2005.

[63]

Jin L, Yong P. Study on general impact of territorial water diversion on improvement of water environment in wuchengxiyu zone in Taihu Lake Basin. Procedia Environmental Sciences, 2011, 10: 45-50. DOI:10.1016/j.proenv.2011.09.009

[64]

Wu HY, Hu Y. Maintaining healthy rivers and lakes through water diversion from Yangtze River to Taihu Lake in Taihu Basin. Water Science and Engineering, 2008, 1(3): 36-43. DOI:10.3882/j.issn.1674-2370.2008.03.004

[65]

Peng FJ, Li KF, Liang RF et al. Shallow Lake water exchange process before and after water diversion projects as affected by wind field. Journal of Hydrology, 2021, 592: 125785. DOI:10.1016/j.jhydrol.2020.125785

[66]

Zhang XL, Zou R, Wang YL et al. Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?. Journal of Hydrology, 2016, 542: 281-291. DOI:10.1016/j.jhydrol.2016.09.002

[67]

Liu Y, Wang YL, Sheng H et al. Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Science of the Total Environment, 2014, 468/469: 219-227. DOI:10.1016/j.scitotenv.2013.08.054

[68]

Li YP, Tang CY, Wang C et al. Improved Yangtze River diversions: Are they helping to solve algal bloom problems in Lake Taihu, China?. Ecological Engineering, 2013, 51: 104-116. DOI:10.1016/j.ecoleng.2012.12.077

[69]

Dai JY, Wu SQ, Wu XF et al. Impacts of a large river-to-lake water diversion project on lacustrine phytoplankton communities. Journal of Hydrology, 2020, 587: 124938. DOI:10.1016/j.jhydrol.2020.124938

[70]

Yao XL, Zhang L, Zhang YL et al. Water diversion projects negatively impact lake metabolism: A case study in Lake Dazong, China. Science of the Total Environment, 2018, 613/614: 1460-1468. DOI:10.1016/j.scitotenv.2017.06.130

[71]

Tang CY, He C, Li YP et al. Diverse responses of hydrodynamics, nutrients and algal biomass to water diversion in a eutrophic shallow lake. Journal of Hydrology, 2021, 593: 125933. DOI:10.1016/j.jhydrol.2020.125933

[72]

Kortmann RW, Davis ER, Frink CR et al. Hypolimnetic withdrawal: restoration of Lake Wonoscopomuc, Connecticut. In: Lake Restoration, Protection and Management. USA: USEPA-440/5-83-001, 1983: 46-55.

[73] [74]

Ma XY, Yang P, Zhang M et al. Advances in researches on phosphorous inactivation materials in lake sediment. J Lake Sci, 2021, 34(1): 1-21. [马鑫雨, 杨盼, 张曼等. 湖泊沉积物磷钝化材料的研究进展. 湖泊科学, 2021, 34(1): 1-21. DOI:10.18307/2022.0101]

[75]

Jiang XM, Yang XJ, Wang SX et al. Research and engineering practice of phosphorus removal by the method of iron salt precipitation adsorption in Ze Lake of Yunnan University. Journal of Yunnan University: Natural Sciences Edition, 2021, 43(6): 1183-1191. [蒋小梅, 杨项军, 王世雄等. 铁盐沉淀吸附法除磷在云南大学泽湖中的工程化实践. 云南大学学报: 自然科学版, 2021, 43(6): 1183-1191. DOI:10.7540/j.ynu.20210453]

[76]

Yang HQ, He KK, Lu DP et al. Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: effectiveness and ecological risks. Science of the Total Environment, 2020, 705: 135850. DOI:10.1016/j.scitotenv.2019.135850

[77]

Zhang QY, Du YX, Luo CY et al. Advances in researches on phosphorus immobilization by lanthanum modified bentonite in lakes and its ecological risk. J Lake Sci, 2019, 31(6): 1499-1509. [张巧颖, 杜瑛珣, 罗春燕等. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展. 湖泊科学, 2019, 31(6): 1499-1509. DOI:10.18307/2019.0620]

[78]

Copetti D, Finsterle K, Marziali L et al. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 2016, 97: 162-174. DOI:10.1016/j.watres.2015.11.056

[79]

You HL, Wu YM, Xu LG et al. Research progress on in-situ inactivation technology for sediment of contaminated water. Jiangxi Science, 2014, 32(6): 806-810. [游海林, 吴永明, 徐力刚等. 污染水体底泥原位钝化技术研究进展. 江西科学, 2014, 32(6): 806-810.]

[80]

Lürling M, van Oosterhout F. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research, 2013, 47(17): 6527-6537. DOI:10.1016/j.watres.2013.08.019

[81]

Bishop WM, McNabb T, Cormican I et al. Operational evaluation of phoslock phosphorus locking technology in Laguna Niguel Lake, California. Water Air & Soil Pollution, 2014, 225(7): 1-11. DOI:10.1007/s11270-014-2018-6

[82]

Spears BM, Mackay EB, Yasseri S et al. A meta-analysis of water quality and aquatic macrophyte responses in 18 lakes treated with lanthanum modified bentonite (Phoslock®). Water Research, 2016, 97: 111-121. DOI:10.1016/j.watres.2015.08.020

[83]

Yin HB, Kong M, Han MX et al. Influence of sediment resuspension on the efficacy of geoengineering materials in the control of internal phosphorous loading from shallow eutrophic lakes. Environmental Pollution, 2016, 219: 568-579. DOI:10.1016/j.envpol.2016.06.011

[84]

Gan L, Zhong P, Su L et al. Effects of Lanthanum modified bentonite on the water phosphorus concentration and sediment phosphorus form in a shallow eutrophic lake. J Lake Sci, 2019, 31(5): 1219-1228. [甘磊, 钟萍, 苏玲等. 镧改性膨润土对浅水湖泊水体磷浓度和沉积物磷形态的影响. 湖泊科学, 2019, 31(5): 1219-1228. DOI:10.18307/2019.0517]

[85]

Fu YS, He H, He HY et al. Effect of addition of lanthanum-modified bentonite(Phoslock®) in sediments on growth of Hydrilla verticillata under different water nutrient concentration. J Lake Sci, 2021, 33(2): 388-396. [符亦舒, 何虎, 何宏业等. 不同水体营养盐浓度下沉积物添加镧改性膨润土(Phoslock®)对轮叶黑藻(Hydrilla verticillata)生长的影响. 湖泊科学, 2021, 33(2): 388-396. DOI:10.18307/2021.0209]

[86]

Wu JL, Gan L, Liu SX et al. Effect of restoration on the eutrophication and ecological status of Lake Yanglan (Hubei Province): Assessment based on macroinvertebrates. J Lake Sci, 2019, 31(6): 1547-1558. [吴家乐, 甘磊, 刘素霞等. 修复对湖北洋澜湖富营养化与生态状况的影响: 基于大型无脊椎底栖动物的评价. 湖泊科学, 2019, 31(6): 1547-1558. DOI:10.18307/2019.0616]

[87]

Zhou DD, Wu WW. Study on the technique of basal repair of lakeside zone. Journal of Anhui Agricultural Sciences, 2011, 39(3): 1671-1672. [周丹丹, 吴文卫. 湖滨带基底修复工程技术研究. 安徽农业科学, 2011, 39(3): 1671-1672.]

[88]

Li YJ, Hu XZ, Jin XC et al. Filling technology of clean lake sediment and its application in Fubao Bay, Dianchi lake. Technology of Water Treatment, 2010, 36(3): 123-127. [李英杰, 胡小贞, 金相灿等. 清洁底泥吹填技术及其在滇池福保湾的应用. 水处理技术, 2010, 36(3): 123-127.]

[89]

Li L, Zhong ZL. Ecological restoration and habitat construction of urban wetland—Take the No. 2 stage project of changsha lake wetland park as an example, In: 2017(12th) Urban Development and Planning Conference, Haikou, Hainan, China, 2017: 5. [李立, 钟正龙. 城市湿地的生态修复与生境营造——以长沙洋湖湿地公园二期工程为例. 见: 2017(第十二届)城市发展与规划大会. 中国海南海口, 2017: 5. ]

[90]

Qin BQ, Hu WP, Liu ZW et al. Experiment on water purification by ecological measures in water sources of Meiliangwan of Taihu. China Water Resources, 2006(17): 23-29. [秦伯强, 胡维平, 刘正文等. 太湖梅梁湾水源地通过生态修复净化水质的试验. 中国水利, 2006(17): 23-29.]

[91]

Gao G, Zhang YL, Shao KQ. Shallow lake ecological restoration and grass ecosystem reconstruction—A case study in Lihu of Taihu Lake. Science, 2021, 73(3): 9-12, 4. [高光, 张运林, 邵克强. 浅水湖泊生态修复与草型生态系统重构实践——以太湖蠡湖为例. 科学, 2021, 73(3): 9-12, 4.]

[92]

Liu ZW, Zhang XF, Chen FZ et al. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration. J Lake Sci, 2020, 32(1): 1-10. [刘正文, 张修峰, 陈非洲等. 浅水湖泊底栖——敞水生境耦合对富营养化的响应与稳态转换机理: 对湖泊修复的启示. 湖泊科学, 2020, 32(1): 1-10. DOI:10.18307/2020.0101]

[93]

Liu Y, Guo HC, Zhou F et al. Role of water level fluctuation on aquatic vegetation in lakes. Acta Ecologica Sinica, 2006, 26(9): 3117-3126. [刘永, 郭怀成, 周丰等. 湖泊水位变动对水生植被的影响机理及其调控方法. 生态学报, 2006, 26(9): 3117-3126.]

[94]

Qin JL, Yin XA, Liu HR et al. Analysis of effect of lake water level changes on emergent plants: A case study in the Hongze Lake. Environmental Engineering, 2020, 38(10): 53-60. [秦敬岚, 尹心安, 刘洪蕊等. 湖泊水位变化对挺水植物影响分析: 以洪泽湖为例. 环境工程, 2020, 38(10): 53-60. DOI:10.13205/j.hjgc.202010009]

[95]

Xu WW, Hu WP, Deng JC et al. Impacts of water depth and substrate type on Vallisneria natans at wave-exposed and sheltered sites in a eutrophic large lake. Ecological Engineering, 2016, 97: 344-354. DOI:10.1016/j.ecoleng.2016.10.029

[96]

Yuan SB, Zhang XK, Liu XQ et al. Ecological water level management strategy for aquatic vegetation in the mid-lower Yangtze shallow lakes. Acta Hydrobiologica Sinica, 2019, 43(S1): 104-109. [袁赛波, 张晓可, 刘学勤等. 长江中下游湖泊水生植被的生态水位管理策略. 水生生物学报, 2019, 43(S1): 104-109. DOI:10.7541/2019.173]

[97]

Zhang XK, Liu XQ, Wang HZ. Developing water level regulation strategies for macrophytes restoration of a large river-disconnected lake, China. Ecological Engineering, 2014, 68: 25-31. DOI:10.1016/j.ecoleng.2014.03.087

[98]

Xu FL, Tao S, Xu ZR. The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese Lake: Possibilities and effects. Hydrobiologia, 1999, 405: 169-178. DOI:10.1023/A:1003867309767

[99]

Kong XZ, Jørgensen SE, He W et al. Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China. Ecological Modelling, 2013, 266: 73-85. DOI:10.1016/j.ecolmodel.2013.07.001

[100]

He Y, Li YT, Li R et al. Exploring possibility to regain polluted-lake water quality by means of bioremediation and water diversion. Journal of Safety and Environment, 2005, 5(1): 56-60. [何用, 李义天, 李荣等. 改善湖泊水环境的调水与生物修复结合途径探索. 安全与环境学报, 2005, 5(1): 56-60.]

[101]

Li FF, Chu SY, Cui LZ et al. Research advances on the influence mechanisms of submerged plants growth and decomposition on nitrogen and phosphorus in eutrophic water. Ecological Science, 2018, 37(4): 225-230. [李菲菲, 褚淑祎, 崔灵周等. 沉水植物生长和腐解对富营养化水体氮磷的影响机制研究进展. 生态科学, 2018, 37(4): 225-230.]

[102]

Han Y, Li XM, Zhu YS. Environmental pollution and plant function. Beijing: Chemical Industry Press, 2005. [韩阳, 李雪梅, 朱延姝. 环境污染与植物功能. 北京: 化学工业出版社, 2005.]

[103]

Xia X. Mechanism and application of ecologically restoring eutrophic water with submerged plants. Shanxi Agricultural Economy, 2021(11): 119-120. [夏雪. 沉水植物生态修复富营养化水体的机理和应用. 山西农经, 2021(11): 119-120.]

[104]

Guo YQ, Xue JH, Wu YB et al. Research progress on purification effects and restoration technologies of submerged macrophytes on eutrophic water. Journal of Plant Resources and Environment, 2020, 29(3): 58-68. [郭雅倩, 薛建辉, 吴永波等. 沉水植物对富营养化水体的净化作用及修复技术研究进展. 植物资源与环境学报, 2020, 29(3): 58-68.]

[105]

Zhang ZH, Wu XF, Li W. Functions of submerged macrophytes in in situ ecological restoration of eutrophic waters. Journal of Central South University of Forestry & Technology, 2018, 38(3): 115-121. [张之浩, 吴晓芙, 李威. 沉水植物在富营养化水体原位生态修复中的功能. 中南林业科技大学学报, 2018, 38(3): 115-121.]

[106]

Jin SQ, Zhou JB, Bao WH et al. Comparison of nitrogen and phosphorus uptake and water purification ability of five submerged macrophytes. Environmental Science, 2017, 38(1): 156-161. [金树权, 周金波, 包薇红等. 5种沉水植物的氮、磷吸收和水质净化能力比较. 环境科学, 2017, 38(1): 156-161. DOI:10.13227/j.hjkx.201606135]

[107]

Wang Q, Han Y, Shi NN et al. Application of submerged plant community reconstruction technology in water ecological restoration of Dianchi Chaohai Lake. In: 2020 Annual Meeting of Chinese Society for Environmental Science. Nanjing, Jiangsu, China: 2020: 1677-1684. [王琦, 韩煜, 史娜娜等. 沉水植物群落重构技术在滇池草海水生态修复中的应用. 见: 2020中国环境科学学会科学技术年会. 中国江苏南京, 2020: 1677-1684. ]

[108]

Luo X, Ma JC. Discussion on the coverage design of submerged vegetation in shallow lakes. Journal of Yangtze River Scientific Research Institute, 2021, 38(3): 20-24, 38. [罗希, 马俊超. 关于浅水湖泊沉水植物覆盖度设计依据的探讨. 长江科学院院报, 2021, 38(3): 20-24, 38. DOI:10.11988/ckyyb.20200039]

[109]

Zhang WZ, Shen H, Zhang J et al. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: A novel implication for lake restoration. Chemosphere, 2020, 239: 124702. DOI:10.1016/j.chemosphere.2019.124702

[110]

Zhang WZ, Wang L, Chen L et al. Proliferation of filamentous green algae along with submerged macrophytes planting, and the role of microbe. Ecological Engineering, 2019, 139: 105570. DOI:10.1016/j.ecoleng.2019.07.040

[111]

Liu Z, Qian X, Gao HL et al. Effect of submerged plant community allocation on water transfer in Gonghu ecological restoration area of Taihu Lake. Jiangsu Agricultural Sciences, 2016, 44(5): 480-483. [刘喆, 钱新, 高海龙等. 沉水植物群落配置对太湖贡湖生态修复区的调水效果. 江苏农业科学, 2016, 44(5): 480-483.]

[112]

Kim Y, Kim WJ. Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Research, 2000, 34(13): 3285-3294. DOI:10.1016/S0043-1354(00)00068-3

[113]

Qin HJ, Zhang ZY, Liu HQ et al. Growth characteristics and water purification of two free-floating macrophytes. China Environmental Science, 2016, 36(8): 2470-2479. [秦红杰, 张志勇, 刘海琴等. 两种漂浮植物的生长特性及其水质净化作用. 中国环境科学, 2016, 36(8): 2470-2479.]

[114]

Hu CW, Sun ZD, Li JL et al. Application of water hyacinth in restoration of heavily polluted urban rivers. Chinese Journal of Environmental Engineering, 2007, 1(12): 51-56. [胡长伟, 孙占东, 李建龙等. 凤眼莲在城市重污染河道修复中的应用. 环境工程学报, 2007, 1(12): 51-56.]

[115]

Liu MH, Wen XZ, Zhang ZY et al. Purification effect of biological floating island and floating plants on an open contaminated pond. Acta Hydrobiologica Sinica, 2017, 41(6): 1318-1326. [刘旻慧, 闻学政, 张志勇等. 生物浮岛与漂浮植物对开放池塘水质净化效果. 水生生物学报, 2017, 41(6): 1318-1326. DOI:10.7541/2017.163]

[116]

Liu SZ, Lin DJ, Tang SJ et al. Purification of eutrophic wastewater by Cyperus alternifolius, Coleus blumei and Jasminum sambac planted in a floating phytoremediation system. Chinese Journal of Applied Ecology, 2004, 15(7): 1261-1265. [刘士哲, 林东教, 唐淑军等. 利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究. 应用生态学报, 2004, 15(7): 1261-1265. DOI:10.13287/j.1001-9332.2004.0267]

[117]

Huang TL, Dai DC, Wang Z et al. Water quality purification of urban lakes and rivers with floating phytoremediation system. Progress in Geography, 2006, 25(6): 62-67. [黄廷林, 戴栋超, 王震等. 漂浮植物修复技术净化城市河湖水体试验研究. 地理科学进展, 2006, 25(6): 62-67.]

[118]

Hu ZF, Li DS, Guan DT. Water quality retrieval and algae inhibition from eutrophic freshwaters with iron-rich substrate based ecological floating beds treatment. Science of the Total Environment, 2020, 712: 135584. DOI:10.1016/j.scitotenv.2019.135584

[119]

Guo YM, Liu YG, Zeng GM et al. A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation. Journal of Environmental Sciences, 2014, 26(5): 1090-1098. DOI:10.1016/S1001-0742(13)60500-8

[120]

Wang Z, Zhang ZY, Zhang JQ et al. The fauna structure of benthic macro-invertebrates for environmental restoration in a eutrophic lake using water hyacinths. China Environmental Science, 2012, 32(1): 142-149. [王智, 张志勇, 张君倩等. 水葫芦修复富营养化湖泊水体区域内外底栖动物群落特征. 中国环境科学, 2012, 32(1): 142-149.]

[121]

Wang WH, Wang Y, Sun LQ et al. Research and application status of ecological floating bed in eutrophic landscape water restoration. Science of the Total Environment, 2020, 704: 135434. DOI:10.1016/j.scitotenv.2019.135434

[122]

Cai YJ, Liang JS, Zhang PY et al. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in Northern China. Chemosphere, 2021, 285: 131534. DOI:10.1016/j.chemosphere.2021.131534

[123]

Yang C, Kim DK, Bowman J et al. Predicting the likelihood of a desirable ecological regime shift: A case study in Cootes Paradise marsh, Lake Ontario, Ontario, Canada. Ecological Indicators, 2020, 112: 105794. DOI:10.1016/j.ecolind.2019.105794

[124]

Im S, Lee BE, Lee HG et al. Perennial emergent macrophytes as the main determinant of Hydrochara affinis inhabitation. Journal of Asia-Pacific Entomology, 2019, 22(4): 1070-1081. DOI:10.1016/j.aspen.2019.08.008

[125]

Yu JH, Wang LH, Kang DJ et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J Lake Sci, 2021, 33(5): 1467-1477. [余居华, 王乐豪, 康得军等. 湖滨带芦苇恢复过程中沉积物氮赋存形态及含量变化: 以巢湖为例. 湖泊科学, 2021, 33(5): 1467-1477. DOI:10.18307/2021.0514]

[126]

Li EH, Li W, Wang XL et al. Experiment of emergent macrophytes growing in contaminated sludge: Implication for sediment purification and lake restoration. Ecological Engineering, 2010, 36(4): 427-434. DOI:10.1016/j.ecoleng.2009.11.009

[127]

Fujibayashi M, Takakai F, Masuda S et al. Effects of restoration of emergent macrophytes on the benthic environment of the littoral zone of a eutrophic lake. Ecological Engineering, 2020, 155: 105960. DOI:10.1016/j.ecoleng.2020.105960

[128]

Cao Q, Li M, Yang H et al. Dynamic changes of the retention capacity for phosphorus by emergent macrophytes in the Yeyahu Wetland. Acta Scientiae Circumstantiae, 2012, 32(8): 1874-1881. [曹琪, 李敏, 杨航等. 野鸭湖湿地挺水植物磷素截留量动态变化分析. 环境科学学报, 2012, 32(8): 1874-1881. DOI:10.13671/j.hjkxxb.2012.08.002]

[129]

Lai WL, Hu JF, Chen ZH. Eco-physiological characteristics and decontamination efficiency of four emergent macrophytes. Journal of Tropical and Subtropical Botany, 2010, 18(4): 421-427. [赖闻玲, 胡菊芳, 陈章和. 四种挺水植物生理生态特性和污水净化效果研究. 热带亚热带植物学报, 2010, 18(4): 421-427.]

[130]

Liang SX, Zhang ZR, Wang YX et al. Purification of typical emergent aquatic plant on eutrophicated water in Lake Baiyangdian. Science Technology and Engineering, 2013, 13(11): 3048-3052. [梁淑轩, 张振冉, 王云晓等. 白洋淀典型挺水植物净化水质效果. 科学技术与工程, 2013, 13(11): 3048-3052.]

[131]

Yuan J, Dong LX, Yang J et al. Study on purification effect of nitrogen and phosphorus in eutrophic river water by six emerged plants. Environmental Science and Management, 2017, 42(4): 75-78, 83. [袁杰, 董立新, 杨洁等. 六种挺水植物对富营养化河水氮磷净化效果研究. 环境科学与管理, 2017, 42(4): 75-78, 83.]

[132]

Nie L, He MM, Dai SP. Eco-physiological characteristics and environmental effects of ten wetland emerged plant species on purifying the rivulet sewage in Guangzhou. Hubei Agricultural Sciences, 2011, 50(9): 1776-1780. [聂磊, 贺漫媚, 代色平. 十种湿地挺水植物净化广州河涌污水的生理生态效应分析. 湖北农业科学, 2011, 50(9): 1776-1780.]

[133]

Tang YX, Zheng JM, Lou LP et al. Comparisons of NH4+, NO3- and H2PO4- uptake kinetics in three different macrophytes in waterlogged condition. Chinese Journal of Eco-Agriculture, 2011, 19(3): 614-618. [唐艺璇, 郑洁敏, 楼莉萍等. 3种挺水植物吸收水体NH4+、NO3-、H2PO4-的动力学特征比较. 中国生态农业学报, 2011, 19(3): 614-618. DOI:10.3724/SP.J,1011.2011.00614]

[134]

Chu R, Chen NL, Wang XJ et al. The nitrogen removal effect of emergent plant in constructed wetland. Environmental Pollution & Control, 2017, 39(8): 884-889, 894. [褚润, 陈年来, 王小娟等. 人工湿地挺水植物脱氮效果研究. 环境污染与防治, 2017, 39(8): 884-889, 894.]

[135]

Bao XM, Fan CX, Shi GR. Effects of different sediment materials on photosynthetic characters of three emergent plant species. J Lake Sci, 2011, 23(4): 541-548. [包先明, 范成新, 史刚荣. 不同底质改良处理对三种挺水植物光合特性的影响. 湖泊科学, 2011, 23(4): 541-548. DOI:10.18307/2011.0408]

[136]

Triest L, Stiers I, van Onsem S. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology, 2016, 50(3): 461-483. DOI:10.1007/s10452-015-9548-x

[137]

Carpenter SR, Kitchell JF, Hodgson JR. Cascading trophic interactions and lake productivity fish predation and herbivory can regulate lake ecosystems. BioScience, 1985, 35(10): 634-639. DOI:10.2307/1309989

[138]

Søndergaard M, Liboriussen L, Pedersen AR et al. Lake restoration by fish removal: Short- and long-term effects in 36 Danish lakes. Ecosystems, 2008, 11(8): 1291-1305. DOI:10.1007/s10021-008-9193-5

[139]

Liu Z, Hu J, Zhong P et al. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 2018, 146: 88-97. DOI:10.1016/j.watres.2018.09.007

[140]

Cai XW, Li W, Fan HR et al. Roles of fish assemblage regulation on ecological restoration in a shallow lake: A case study from the Kuilei Lake, China. Journal of Fishery Sciences of China, 2021, 28(6): 737-742. [蔡杏伟, 李为, 樊厚瑞等. 鱼类群落调控在浅水湖泊生态修复中的作用: 以傀儡湖为例. 中国水产科学, 2021, 28(6): 737-742. DOI:10.12264/JFSC2021-0012]

[141]

Zhang M, Zhang HC, Song DY et al. The control effects of Daphnia magna population on the phytoplankton in eutrophic water body. Ecological Science, 2015, 34(2): 76-81. [张曼, 张河长, 宋东蓥等. 富营养水体大型溞的种群数量对浮游植物的控制效应. 生态科学, 2015, 34(2): 76-81.]

[142]

Liu JK, Xie P. Direct control of Microcystis bloom through the use of planktivorous carp-closure experiments and lake fishery practice. Ecological Science, 2003, 22(3): 193-198. [刘建康, 谢平. 用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践. 生态科学, 2003, 22(3): 193-198.]

[143]

Zhao ZG, Dong SL, Wang F et al. Effect of algae density on breathing and feeding of filter-feeding silver carp (Hypophthalmichthys molitrix Val.). Aquaculture, 2014, 433: 133-136. DOI:10.1016/j.aquaculture.2014.05.043

[144]

Zhang JM, Gao J, Yang C et al. Phytoplankton community structure of Lake Wushan stocked densely with planktivorous filter-feeding bighead and silver carp, middle and lower reaches of the Yangtze River. J Lake Sci, 2020, 32(6): 1771-1783. [张佳敏, 高健, 杨诚等. 以鲢、鳙养殖为主的长江中下游武山湖浮游植物群落结构特征. 湖泊科学, 2020, 32(6): 1771-1783. DOI:10.18307/2020.0617]

[145]

Yi CL, Guo LG, Ni LY et al. Silver carp exhibited an enhanced ability of biomanipulation to control cyanobacteria bloom compared to bighead carp in hypereutrophic Lake Taihu mesocosms. Ecological Engineering, 2016, 89: 7-13. DOI:10.1016/j.ecoleng.2016.01.022

[146]

Hu ZJ, Zhang JW, Zhang Z et al. Effect of silver carp(Hypophthalmichthys molitrix) stocking density on phytoplankton community structure in ponds along Qiandao Lake. Journal of Hydroecology, 2021, 42(6): 57-63. [胡忠军, 张婧雯, 张真等. 不同鲢密度对千岛湖沿岸池塘浮游植物群落结构的影响. 水生态学杂志, 2021, 42(6): 57-63. DOI:10.15928/j.1674-3075.201905050110]

[147]

Yang JJ, Guo LG, Yin CJ et al. Preliminary evaluation of ecological effects of silver and bighead carps to control cyanobacterial blooms in the early eutrophication lake. J Lake Sci, 2019, 31(2): 386-396. [杨姣姣, 过龙根, 尹成杰等. 富营养化初期湖泊放养鲢、鳙控藻生态效果的初步评估. 湖泊科学, 2019, 31(2): 386-396. DOI:10.18307/2019.0208]

[148]

Jin CH, Lu KH, Wang YC. Study on control of blue-green blooms in Moon Lake by using ameliorated alum plasma and filter-feeding animals. Journal of Ningbo University: Natural Science and Engineering Edition, 2004, 17(2): 147-151. [金春华, 陆开宏, 王扬才. 改性明矾浆和滤食性动物控制月湖的蓝藻水华. 宁波大学学报: 理工版, 2004, 17(2): 147-151.]

[149]

Jin CH, Lu KH, Wang YC et al. Control strategies and their effects of cyanobacteria in three drinking water reservoirs in Zhejiang Province. Reservoir Fisheries, 2005, 26(3): 50-55. [金春华, 陆开宏, 王扬才等. 浙江省3座饮用水水库的蓝藻控制对策及效果. 水利渔业, 2005, 26(3): 50-55.]

[150]

Zeng QF, Gu XH, Mao ZG et al. Ecological effect of the excretion from silver carp and bighead carp in algal bloom control: A review. Chinese Journal of Ecology, 2010, 29(9): 1806-1811. [曾庆飞, 谷孝鸿, 毛志刚等. 鲢鳙控藻排泄物生态效应研究进展. 生态学杂志, 2010, 29(9): 1806-1811. DOI:10.13292/j.1000-4890.2010.0304]

[151]

Liu M, Xu MX, Xu DL et al. Status quo and progress in research and application on nonclassical biomanipulation of silver carp and bighead carp. Journal of Hydroecology, 2010, 31(3): 99-103. [刘敏, 徐敏娴, 许迪亮等. 鲢、鳙非经典生物操纵作用的研究进展与应用现状. 水生态学杂志, 2010, 31(3): 99-103. DOI:10.15928/j.1674-3075.2010.03.004]

[152]

Liu QG, Zhang Z. Controlling the nuisance algae by silver and bighead carps in eutrophic lakes: Disputes and consensus. J Lake Sci, 2016, 28(3): 463-475. [刘其根, 张真. 富营养化湖泊中的鲢、鳙控藻问题: 争议与共识. 湖泊科学, 2016, 28(3): 463-475. DOI:10.18307/2016.0301]

[153]

Wang YP, Gu XH, Zeng QF et al. Contrasting response of a plankton community to two filter-feeding fish and their feces: An in situ enclosure experiment. Aquaculture, 2016, 465: 330-340. DOI:10.1016/j.aquaculture.2016.08.014

[154]

Ma H, Cui FY, Liu ZQ et al. Effect of filter-feeding fish silver carp on phytoplankton species and size distribution in surface water: A field study in water works. Journal of Environmental Sciences, 2010, 22(2): 161-167. DOI:10.1016/S1001-0742(09)60088-7

[155]

Fei ZL, Wu J, Zhao Q et al. Effect of filtration and digestion of Hyriopsis cumingii to algae. Freshwater Fisheries, 2006, 36(5): 24-27. [费志良, 吴军, 赵钦等. 三角帆蚌对藻类滤食及消化的研究. 淡水渔业, 2006, 36(5): 24-27.]

[156]

Pan JL, Xu ZK, Tang JQ et al. Study on the effects of large mollusks on alge control and water quality at Meiliang Gulf in Taihou Lake. Transactions of Oceanology and Limnology, 2007(2): 69-79. [潘建林, 徐在宽, 唐建清等. 湖泊大型贝类控藻与净化水质的研究. 海洋湖沼通报, 2007(2): 69-79.]

[157]

Fei ZL, Pan JL, Xu ZL et al. Study of the elimination of suspented substances and chlorophyll in water by Hytiopsis cumingii (LEA). Transactions of Oceanology and Limnology, 2005(2): 40-45. [费志良, 潘建林, 徐在宽等. 三角帆蚌对水体悬浮物和叶绿素a消除量的研究. 海洋湖沼通报, 2005(2): 40-45.]

[158]

Zhao MZ, Fei ZL, Hao C et al. Short-term purification of water by different mollusks. Fisheries Science, 2006, 25(3): 133-135. [赵沐子, 费志良, 郝忱等. 不同贝类对水质净化效果的比较. 水产科学, 2006, 25(3): 133-135.]

[159]

Chen Q, Chao JY, Zhang YM et al. Study on remediation in eutrophic waterbody by zoobenthos and emergent plants. Technology of Water Treatment, 2011, 37(8): 61-63, 71. [陈倩, 晁建颖, 张毅敏等. 底栖动物与挺水植物协同修复富营养化水体的研究. 水处理技术, 2011, 37(8): 61-63, 71.]

[160]

Yao Y, Jin XC, Jiang X et al. Study on effects of light on phosphorus release and phosphorus form change in lake sediments. Research of Environmental Sciences, 2004, 17(S1): 30-33. [姚扬, 金相灿, 姜霞等. 光照对湖泊沉积物磷释放及磷形态变化的影响研究. 环境科学研究, 2004, 17(S1): 30-33. DOI:10.13198/j.res.2004.s1.32.yaoy.007]

[161]

Gu J, Han YQ, He H et al. Effects of freshwater bivalve Corbicula fluminea on the growth of submerged macrophytes Vallisneria natans. Chinese Journal of Ecology, 2021, 40(5): 1512-1520. [谷娇, 韩燕青, 何虎等. 淡水贝类河蚬对沉水植物苦草生长的影响. 生态学杂志, 2021, 40(5): 1512-1520. DOI:10.13292/j.1000-4890.202105.011]

[162]

Shen RJ, Gu XH, Chen HH et al. Combining bivalve (Corbicula fluminea) and filter-feeding fish (Aristichthys nobilis) enhances the bioremediation effect of algae: An outdoor mesocosm study. Science of the Total Environment, 2020, 727: 138692. DOI:10.1016/j.scitotenv.2020.138692

[163]

Belykh OI, Tikhonova IV, Kuzmin AV et al. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 2016, 121: 36-40. DOI:10.1016/j.toxicon.2016.08.015

[164]

Savela H, Spoof L, Perälä N et al. Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae, 2015, 46: 1-10. DOI:10.1016/j.hal.2015.04.005

[165]

Gu J, He H, Jin H et al. Synergistic negative effects of small-sized benthivorous fish and nitrogen loading on the growth of submerged macrophytes—Relevance for shallow lake restoration. Science of the Total Environment, 2018, 610/611: 1572-1580. DOI:10.1016/j.scitotenv.2017.06.119

[166]

Wang SB, Qu YF, Xu ZR. Algal bloom control in eutrophic lakes and reservoirs based on biomanipulation. Water Resources Protection, 2016, 32(5): 1-4, 23. [王寿兵, 屈云芳, 徐紫然. 基于生物操纵的富营养化湖库蓝藻控制实践. 水资源保护, 2016, 32(5): 1-4, 23.]

[167]

Silva C, Yáñez E, Martín-Díaz ML et al. Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture—application of GIS and shellfish dynamic models in the Rio San Pedro, SW Spain. Marine Pollution Bulletin, 2012, 64(4): 751-765. DOI:10.1016/j.marpolbul.2012.01.019

[168]

Shen RJ. Study on the synergistic mechanism and effect of algae control by filter-feeding aquatic organism[Dissertation]. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2020. [沈睿杰. 滤食性水生动物协同控藻机制及效果研究[学位论文]. 南京: 中国科学院南京地理与湖泊研究所, 2020. ]

[169]

Visser PM, Ibelings BW, Bormans M et al. Artificial mixing to control cyanobacterial blooms: A review. Aquatic Ecology, 2016, 50(3): 423-441. DOI:10.1007/s10452-015-9537-0

[170]

Wang YY, He Q, Tang H et al. Two-year moving aeration controls cyanobacterial blooms in an extremely eutrophic shallow pond: Variation in phytoplankton community and Microcystis colony size. Journal of Water Process Engineering, 2021, 42: 102192. DOI:10.1016/j.jwpe.2021.102192

[171]

Lürling M, Waajen G, Senerpont Domis LN. Evaluation of several end-of-pipe measures proposed to control cyanobacteria. Aquatic Ecology, 2016, 50(3): 499-519. DOI:10.1007/s10452-015-9563-y

[172]

Barbiero RP, Ashby SL, Kennedy RH. The effects of artificial circulation on a small northeastern impoundment. Journal of the American Water Resources Association, 1996, 32(3): 575-584. DOI:10.1111/j.1752-1688.1996.tb04055.x

[173]

Cao B, Liu C. Precise "healing" of water bodies in small watersheds of County towns. World Environment, 2021(2): 73-76. [曹斌, 柳晨. 县城小流域水体的精准"治愈术". 世界环境, 2021(2): 73-76.]

[174]

Zhu XD. The research and application of the oxygen demand calculation model of polluted water. Technology of Water Treatment, 2021, 47(4): 78-80, 85. [朱小冬. 黑臭水体需氧量计算模型研究及应用. 水处理技术, 2021, 47(4): 78-80, 85.]

[175]

Rajasekhar P, Fan LH, Nguyen T et al. A review of the use of sonication to control cyanobacterial blooms. Water Research, 2012, 46(14): 4319-4329. DOI:10.1016/j.watres.2012.05.054

[176]

Joyce E, Phull SS, Lorimer JP et al. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 2003, 10(6): 315-318. DOI:10.1016/S1350-4177(03)00101-9

[177]

Chen HL, Li Y, Chu ZS et al. Present situation and research progress of ultrasonic algae control technology. Journal of Environmental Engineering Technology, 2020, 10(1): 72-78. [陈贺林, 李芸, 储昭升等. 超声波控藻技术现状及研究进展. 环境工程技术学报, 2020, 10(1): 72-78.]

[178]

Tan X, Sun YT, Duan ZP et al. Influence of ultrasonic intensity on sinking of Microcystis colonies and their floating process under different light and temperature conditions. J Lake Sci, 2017, 29(5): 1168-1176. [谭啸, 孙玉童, 段志鹏等. 不同超声强度下微囊藻群体沉降及其上浮过程对光照和温度的响应. 湖泊科学, 2017, 29(5): 1168-1176. DOI:10.18307/2017.0514]

[179]

Tan X, Gu HH, Duan ZP et al. Effects of ultrasound on the released amount of nitrogen and phosphorus and changes of water quality during blooms control. China Environmental Science, 2018, 38(4): 1371-1376. [谭啸, 顾惠卉, 段志鹏等. 超声波控藻对氮磷释放及水质变化的影响. 中国环境科学, 2018, 38(4): 1371-1376.]

[180]

Frenkel V, Kimmel E, Iger Y. Ultrasound-induced cavitation damage to external epithelia of fish skin. Ultrasound in Medicine & Biology, 1999, 25(8): 1295-1303. DOI:10.1016/S0301-5629(99)00069-1

[181]

Holm ER, Stamper DM, Brizzolara RA et al. Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Marine Pollution Bulletin, 2008, 56(6): 1201-1208. DOI:10.1016/j.marpolbul.2008.02.007

[182]

Lürling M, Mucci M. Mitigating eutrophication nuisance: In-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia, 2020, 847(21): 4447-4467. DOI:10.1007/s10750-020-04297-9

[183]

van der Veer B, van Nieuwenhuyze RF, Donze M. Accumulation of blue-green algal scums in small harbours and its prevention. SIL Proceedings, 1922-2010, 1993, 25(1): 610-613. DOI:10.1080/03680770.1992.11900203

[184]

Li DH, Wang ZC, Qin HJ et al. An integrated technology of bloom-barrier and bloom-trap for cyanobacterial bloom control. Resources and Environment in the Yangtze Basin, 2012, 21(S2): 45-50. [李敦海, 汪志聪, 秦红杰等. 蓝藻水华的拦截和陷阱捕获综合控藻技术研究. 长江流域资源与环境, 2012, 21(S2): 45-50.]

[185]

Lürling M, Oosterhout F. Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia, 2013, 710(1): 253-263. DOI:10.1007/s10750-012-1141-x

[186]

Zhang YQ, Bi XJ, Yan HM et al. The barricading wave and algae technology in Gonghu Bay ecological restoration area of Taihu Lake. Journal of Anhui Agricultural Sciences, 2016, 44(2): 142-145, 149. [张艳晴, 毕雪娟, 闫晖敏等. 太湖地区贡湖湾生态修复区围隔系统消浪挡藻技术研究. 安徽农业科学, 2016, 44(2): 142-145, 149.]

[187]

Zhao ZY. Preliminary analysis on the causes and effects of algae removal in rivers, lakes and seas in China. Environmental Protection, 2000, 28(8): 29-30. [赵章元. 我国江河湖海除藻的治标与治本浅析. 环境保护, 2000, 28(8): 29-30.]

[188]

Wang SK, Stiles AR, Guo C et al. Harvesting microalgae by magnetic separation: A review. Algal Research, 2015, 9: 178-185. DOI:10.1016/j.algal.2015.03.005

[189]

Fu DB. Application of on-line algae separation magnetic trap vessel in the prevention and control of algae pollution in Chaohu Lake. General Machinery, 2019(7): 55-56, 59. [傅代兵. 藻水在线分离磁捕船在巢湖蓝藻污染防控中的应用. 通用机械, 2019(7): 55-56, 59.]

[190]

Fan F, Shi XL, Zhang M et al. Comparison of algal harvest and hydrogen peroxide treatment in mitigating cyanobacterial blooms via an in situ mesocosm experiment. Science of the Total Environment, 2019, 694: 133721. DOI:10.1016/j.scitotenv.2019.133721

[191]

Zhang YS, Kong FX, Yu Y et al. The characteristics and buoyancy regulations of cyanobacterial gas vesicles. Acta Ecologica Sinica, 2010, 30(18): 5077-5090. [张永生, 孔繁翔, 于洋等. 蓝藻伪空胞的特性及浮力调节机制. 生态学报, 2010, 30(18): 5077-5090.]

[192]

Cong HB, Gao ZJ, Sun XX. Sedimentation and removal of cyanobacteria in Taihu Lake under external pressure. China Water & Wastewater, 2014, 30(1): 43-47. [丛海兵, 高郑娟, 孙秀秀. 压力作用后太湖蓝藻沉淀性能及其去除研究. 中国给水排水, 2014, 30(1): 43-47. DOI:10.19853/j.zgjsps.1000-4602.2014.01.013]

[193]

Chu ZS, Yang B, Jin XC et al. Critical collapse pressure of gas vesicles in six strains of cyanobacteria. Environmental Science, 2007, 28(12): 2695-2699. [储昭升, 杨波, 金相灿等. 6株蓝藻伪空胞的临界破裂压力研究. 环境科学, 2007, 28(12): 2695-2699. DOI:10.13227/j.hjkx.2007.12.012]

[194]

Pan Y, Chen XQ, Zhang ZH et al. Growth control mechanism of cyanobacteria in Taihu Lake under pressure. Environmental Science & Technology, 2020, 43(7): 8-13. [潘阳, 陈旭清, 张铮惠等. 压力作用后的蓝藻在太湖中的生长控制机理. 环境科学与技术, 2020, 43(7): 8-13. DOI:10.19672/j.cnki.1003-6504.2020.07.002]

[195]

Yang CP, Huo Y, Liu J et al. Effects of pressure on Microcystis and its ecological risk. Journal of Hydroecology, 2020, 41(6): 65-73. [杨翠平, 霍岩, 刘津等. 加压对微囊藻的影响及其生态风险探讨. 水生态学杂志, 2020, 41(6): 65-73. DOI:10.15928/j.1674-3075.2020.06.008]

[196]

Guo NN, Qi YK, Meng SL et al. Research progress of eutrophic lake restoration technology. Chinese Agricultural Science Bulletin, 2019, 35(36): 72-79. [郭楠楠, 齐延凯, 孟顺龙等. 富营养化湖泊修复技术研究进展. 中国农学通报, 2019, 35(36): 72-79.]

[197]

Matthijs HCP, Jan c ˇ ula D, Visser PM et al. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology, 2016, 50(3): 443-460. DOI:10.1007/s10452-016-9577-0

[198]

Yang Z, Buley RP, Fernandez-Figueroa EG et al. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond. Environmental Pollution: Barking, Essex: 1987, 2018, 240: 590-598. DOI:10.1016/j.envpol.2018.05.012

[199]

Chang CW, Huo XC, Lin TF. Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation. Water Research, 2018, 141: 217-226. DOI:10.1016/j.watres.2018.05.023

[200]

Matthijs HCP, Visser PM, Reeze B et al. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 2012, 46(5): 1460-1472. DOI:10.1016/j.watres.2011.11.016

[201]

Chen C, Shi XL, Yang Z et al. An integrated method for controlling the offensive odor and suspended matter originating from algae-induced black blooms. Chemosphere, 2019, 221: 526-532. DOI:10.1016/j.chemosphere.2019.01.072

[202]

Chen C, Yang Z, Kong FX et al. Growth, physiochemical and antioxidant responses of overwintering benthic cyanobacteria to hydrogen peroxide. Environmental Pollution, 2016, 219: 649-655. DOI:10.1016/j.envpol.2016.06.043

[203]

Loganathan K, Saththasivam J, Sarp S. Removal of microalgae from seawater using chitosan-alum/ferric chloride dual coagulations. Desalination, 2018, 433: 25-32. DOI:10.1016/j.desal.2018.01.012

[204]

Yu ZM, Song XX, Cao XH et al. Mitigation of harmful algal blooms using modified clays: Theory, mechanisms, and applications. Harmful Algae, 2017, 69: 48-64. DOI:10.1016/j.hal.2017.09.004

[205]

Yuan YT, Zhang HG, Pan G. Flocculation of cyanobacterial cells using coal fly ash modified chitosan. Water Research, 2016, 97: 11-18. DOI:10.1016/j.watres.2015.12.003

[206]

Mucci M, Noyma NP, de Magalhães L et al. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Research, 2017, 118: 121-130. DOI:10.1016/j.watres.2017.04.020

[207]

Li H, Pan G. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local soil. Environmental Science & Technology, 2015, 49(10): 6249-6256. DOI:10.1021/acs.est.5b00840

[208]

Ni JJ, Yu YH, Feng WS et al. Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake, China. Journal of Environmental Sciences, 2010, 22(10): 1500-1507. DOI:10.1016/S1001-0742(09)60270-9

[209]

Chen LT, Zuo J, Tao SY et al. Progress in control of cyanobacteria by microorganism. Journal of Wuhan University: Natural Science Edition, 2019, 65(4): 401-410. [陈莉婷, 左俊, 陶思依等. 利用微生物控制蓝藻研究进展. 武汉大学学报: 理学版, 2019, 65(4): 401-410. DOI:10.14188/j.1671-8836.2019.04.012]

[210]

Chen J, Cong J, Chen GY et al. Control of cyanobacterial bloom with effective microorganisms. Chinese Journal of Environmental Engineering, 2010, 4(1): 101-104. [陈建, 丛君, 陈高云等. 利用有效微生物菌群控制蓝藻水华研究. 环境工程学报, 2010, 4(1): 101-104. DOI:10.1016/j.trd.2004.02.003]

网址:Review on the control and mitigation strategies of lake cyanobacterial blooms https://www.yuejiaxmz.com/news/view/385437

相关内容

Research progress on the quality of life of the elderly and its influencing factors
Research progress on the application of clinical nursing decision
Influence of Network Resources on Students’ Learning in Epidemic Prevention and Control
Progress of the Role of Probiotics in the Prevention and Treatment of Allergic Diseases
Research and Prospects of Smart Home Communication Security
食物过敏:从致敏机理到控制策略
Learn To Invest
基于“城市针灸学”视角下城中村更新改造——以深圳南头古城为例 The Renewal and Reconstruction of Downtown Villages Based on the Perspective of “Urban Acupuncture and Moxibustion”
近年来学习策略的研究进展综述 The Research Progress of Learning Strategies in Recent Years
The Practice of Everyday Life

随便看看