大数据时代移动边缘计算架构中的差分隐私保护(一)

发布时间:2025-01-21 04:09

边缘计算成为数据处理的新趋势,减少延迟并保护用户隐私 #生活知识# #科技生活# #科技趋势#

大数据时代移动边缘计算架构中的差分隐私保护(一)

最新推荐文章于 2024-11-02 04:23:45 发布

置顶 Robin Lu 于 2019-03-17 10:48:56 发布

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

大数据时代移动边缘计算架构中的差分隐私保护(一) 一些概念的学习2019/3/17基于随即响应技术的差分隐私拉普拉斯噪声的数学基础用python实现拉普拉斯噪声的仿真

一些概念的学习

2019/3/17

基于随即响应技术的差分隐私

以下资料整理来源于:本地化差分隐私:如何面对非可信的世界

随机响应技术就是主流的数据扰动机制,由于扰动添加的流程被分配到客户端,因此数据安全性的保证【不再依赖于一个可信实体】,降低了数据泄露的风险。通俗的说,本地化差分隐私就是让各个数据提供者根据一定的概率对自身数据加入噪声,而在数据聚合时,由于噪声符合一定的概率分布,因此不同记录间的噪声相互抵消,从而获得基于大样本的统计学特征。

论文 Erlingsson, Úlfar, Pihur V , Korolova A . RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response[J]. 2014. 中重点实现了ε=ln(p/(1-p))的ε-本地化差分隐私策略(不均匀的硬币)。

在WWDC2016会议上,苹果公司宣布了他们将差分隐私技术应用在iOS10,尽管没有开源相关技术,但是Learning with Privacy at Scale介绍了该技术实现的细节。如下图所示,在苹果对用户Emoji表情使用频数统计中,当一个Emoji表情使用事件发生时,首先对该事件使用ε-本地化差分隐私进行隐私化处理,然后将其暂存在设备上,在经过一定时间后,系统根据规则对暂存的数据随机抽样,并发送至服务器。
在这里插入图片描述

拉普拉斯噪声的数学基础

以下资料整理来源于:1. 差分隐私若干基本知识点介绍(一) 2. 差分隐私若干基本知识点介绍(二)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

用python实现拉普拉斯噪声的仿真

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt import numpy as np def laplace_function(x,beta): result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta)) return result #在-5到5之间等间隔的取10000个数 x = np.linspace(-5,5,10000) y1 = [laplace_function(x_,0.5) for x_ in x] y2 = [laplace_function(x_,1) for x_ in x] y3 = [laplace_function(x_,2) for x_ in x] plt.plot(x,y1,color='r',label='beta:0.5') plt.plot(x,y2,color='g',label='beta:1') plt.plot(x,y3,color='b',label='beta:2') plt.title("Laplace distribution") plt.legend() plt.show()

12345678910111213141516171819

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

import numpy as np def noisyCount(sensitivety,epsilon): beta = sensitivety/epsilon u1 = np.random.random() u2 = np.random.random() if u1 <= 0.5: n_value = -beta*np.log(1.-u2) else: n_value = beta*np.log(u2) print(n_value) return n_value def laplace_mech(data,sensitivety,epsilon): for i in range(len(data)): data[i] += noisyCount(sensitivety,epsilon) return data if __name__ =='__main__': x = [1.,1.,0.] sensitivety = 1 epsilon = 1 data = laplace_mech(x,sensitivety,epsilon) for j in data: print(j)

12345678910111213141516171819202122232425

网址:大数据时代移动边缘计算架构中的差分隐私保护(一) https://www.yuejiaxmz.com/news/view/733427

相关内容

数据隐私,数据隐私保护:如何保护个人数据安全?
大数据时代隐私的边界及限度
大数据时代,如何保护用户隐私?
数字时代下的隐私保护
大数据时代的隐私保护
大数据时代,如何最大化保护个人数据隐私安全?
数据时代,用户的隐私安全谁来守护?
数据安全 隐私,数据时代隐私安全
数据安全与隐私保护:大数据时代的挑战与机遇
人民日报人民时评:让隐私保护跟上大数据时代

随便看看