STM32驱动W25X64存储器
购买可擦除的USB驱动器存储敏感数据。 #生活技巧# #紧急应对技巧# #个人隐私保护#
W25X64 是华邦公司推出的大容量
SPI FLASH 产品,W25X64 的容量为 64Mbit(8M),该系列还有 W25Q80/16/32 等。W25X16,W25X32,W25X64分别有8192,16384,32768个可编程页,每页256字节,用扇区擦除指令每次可以擦除16页,用块擦除指令每次可以擦除256页,用整片擦除指令既可以擦除整个芯片,W25X16,W25X32,W25X64分别有512,1024,2048个可擦除扇区,或者32,64,128个可擦除的块
W25Q64 的擦写周期多达 10W 次,具有 20 年的数据保存期限,支持电压为 2.7~3.6V,
W25Q64 支持标准的 SPI,还支持双输出/四输出的 SPI,最大 SPI 时钟可以到 80Mhz(双输出
时相当于 160Mhz,四输出时相当于 320M)
引脚一般如下
其中CS DO SIO VCC GND都是SPI通讯引脚
HOLD是防误操作引脚,该脚为低时,忽略一切外部指令
wp为保护引脚,该脚为低,数据无法擦除修改
对W25X64的写入读出都伴随着指令,指令集如下
有一个很重要的寄存器是状态寄存器,在对flash写入的时候一定要对状态寄存器查看一下
busy:只读,当flash内部正在进行操作的时候,这一位自动变为1,当该位为1的时候,除了读状态指令,不响应任何指令
wel:写保护位,只读,当芯片处于写保护状态的时候,该位为0,所以当要对芯片进行操作的时候一定要查看这一位,否则无法写入,该位在掉电后,写禁能,页编程,扇区擦除,芯片擦除以及写状态寄存器特定值之后会变为0,执行写使能命令之后会变成1
其他状态寄存器
另外,芯片初始化自检的时候需要读取ID,用于设备识别,id寄存器如下
代码如下
#ifndef __FLASH_H
#define __FLASH_H
#include "spi.h"
#include "delay.h"
#include "ioremap.h"
#define W25Q800XEF13
#define W25Q160XEF14
#define W25Q320XEF15
#define W25Q640XEF16
extern u16 SPI_FLASH_TYPE;
#defineSPI_FLASH_CS PBout(12)
#define W25X_WriteEnable0x06
#define W25X_WriteDisable0x04
#define W25X_ReadStatusReg0x05
#define W25X_WriteStatusReg0x01
#define W25X_ReadData0x03
#define W25X_FastReadData0x0B
#define W25X_FastReadDual0x3B
#define W25X_PageProgram0x02
#define W25X_BlockErase0xD8
#define W25X_SectorErase0x20
#define W25X_ChipErase0xC7
#define W25X_PowerDown0xB9
#define W25X_ReleasePowerDown 0xAB
#define W25X_DeviceID0xAB
#define W25X_ManufactDeviceID 0x90
#define W25X_JedecDeviceID0x9F
void SpiFlashInit(void);
u16 SpiFlashReadID(void);
u8 SpiFlashReadSR(void);
void SpiFlashWriteSR(u8 sr);
void SpiFlashWriteEnable(void);
void SpiFlashWriteDisable(void);
void SpiFlashWriteNoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);
void SpiFlashRead(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead);
void SpiFlashWrite(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite);
void SpiFlashEraseChip(void);
void SpiFlashEraseSector(u32 Dst_Addr);
void SpiFlashWaitBusy(void);
void SpiFlashPowerDown(void);
void SpiFlashWakeUp(void);
u8 SpiFlashCheck(void);
#endif
#include "flash.h"
u16 SPI_FLASH_TYPE=W25Q64;
void SpiFlashInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOD|RCC_APB2Periph_GPIOG, ENABLE );
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_SetBits(GPIOB,GPIO_Pin_12);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_SetBits(GPIOD,GPIO_Pin_2);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_SetBits(GPIOG,GPIO_Pin_7);
Spi2Init();
Spi2SetSpeed(SPI_BaudRatePrescaler_2);
SPI_FLASH_TYPE=SpiFlashReadID();
}
u8 SpiFlashReadSR(void)
{
u8 byte=0;
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_ReadStatusReg);
byte=Spi2ReadWriteByte(0Xff);
SPI_FLASH_CS=1;
return byte;
}
void SpiFlashWriteSR(u8 sr)
{
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_WriteStatusReg);
Spi2ReadWriteByte(sr);
SPI_FLASH_CS=1;
}
void SpiFlashWriteEnable(void)
{
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_WriteEnable);
SPI_FLASH_CS=1;
}
void SpiFlashWriteDisable(void)
{
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_WriteDisable);
SPI_FLASH_CS=1;
}
u16 SpiFlashReadID(void)
{
u16 Temp = 0;
SPI_FLASH_CS=0;
Spi2ReadWriteByte(0x90);
Spi2ReadWriteByte(0x00);
Spi2ReadWriteByte(0x00);
Spi2ReadWriteByte(0x00);
Temp|=Spi2ReadWriteByte(0xFF)<<8;
Temp|=Spi2ReadWriteByte(0xFF);
SPI_FLASH_CS=1;
return Temp;
}
u8 SpiFlashCheck(void)
{
u16 flashId = 0;
flashId = SpiFlashReadID();
if(flashId == W25Q64)
return 0;
else
return 1;
}
void SpiFlashRead(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead)
{
u16 i;
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_ReadData);
Spi2ReadWriteByte((u8)((ReadAddr)>>16));
Spi2ReadWriteByte((u8)((ReadAddr)>>8));
Spi2ReadWriteByte((u8)ReadAddr);
for(i=0;i<NumByteToRead;i++)
{
pBuffer[i]=Spi2ReadWriteByte(0XFF);
}
SPI_FLASH_CS=1;
}
void SPIFlashWritePage(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{
u16 i;
SpiFlashWriteEnable();
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_PageProgram);
Spi2ReadWriteByte((u8)((WriteAddr)>>16));
Spi2ReadWriteByte((u8)((WriteAddr)>>8));
Spi2ReadWriteByte((u8)WriteAddr);
for(i=0;i<NumByteToWrite;i++)Spi2ReadWriteByte(pBuffer[i]);
SPI_FLASH_CS=1;
SpiFlashWaitBusy();
}
void SpiFlashWriteNoCheck(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{
u16 pageremain;
pageremain=256-WriteAddr%256;
if(NumByteToWrite<=pageremain)pageremain=NumByteToWrite;
while(1)
{
SPIFlashWritePage(pBuffer,WriteAddr,pageremain);
if(NumByteToWrite==pageremain)break;
else
{
pBuffer+=pageremain;
WriteAddr+=pageremain;
NumByteToWrite-=pageremain;
if(NumByteToWrite>256)pageremain=256;
else pageremain=NumByteToWrite;
}
};
}
u8 SPI_FLASH_BUF[4096];
void SpiFlashWrite(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)
{
u32 secpos;
u16 secoff;
u16 secremain;
u16 i;
secpos=WriteAddr/4096;
secoff=WriteAddr%4096;
secremain=4096-secoff;
if(NumByteToWrite<=secremain)secremain=NumByteToWrite;
while(1)
{
SpiFlashRead(SPI_FLASH_BUF,secpos*4096,4096);
for(i=0;i<secremain;i++)
{
if(SPI_FLASH_BUF[secoff+i]!=0XFF)break;
}
if(i<secremain)
{
SpiFlashEraseSector(secpos);
for(i=0;i<secremain;i++)
{
SPI_FLASH_BUF[i+secoff]=pBuffer[i];
}
SpiFlashWriteNoCheck(SPI_FLASH_BUF,secpos*4096,4096);
}else SpiFlashWriteNoCheck(pBuffer,WriteAddr,secremain);
if(NumByteToWrite==secremain)break;
else
{
secpos++;
secoff=0;
pBuffer+=secremain;
WriteAddr+=secremain;
NumByteToWrite-=secremain;
if(NumByteToWrite>4096)secremain=4096;
else secremain=NumByteToWrite;
}
};
}
void SpiFlashEraseChip(void)
{
SpiFlashWriteEnable();
SpiFlashWaitBusy();
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_ChipErase);
SPI_FLASH_CS=1;
SpiFlashWaitBusy();
}
void SpiFlashEraseSector(u32 Dst_Addr)
{
Dst_Addr*=4096;
SpiFlashWriteEnable();
SpiFlashWaitBusy();
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_SectorErase);
Spi2ReadWriteByte((u8)((Dst_Addr)>>16));
Spi2ReadWriteByte((u8)((Dst_Addr)>>8));
Spi2ReadWriteByte((u8)Dst_Addr);
SPI_FLASH_CS=1;
SpiFlashWaitBusy();
}
void SpiFlashWaitBusy(void)
{
while ((SpiFlashReadSR()&0x01)==0x01);
}
void SpiFlashPowerDown(void)
{
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_PowerDown);
SPI_FLASH_CS=1;
DelayMs(3);
}
void SpiFlashWakeUp(void)
{
SPI_FLASH_CS=0;
Spi2ReadWriteByte(W25X_ReleasePowerDown);
SPI_FLASH_CS=1;
DelayMs(3);
}
SPI偽字节在一般意义上就是指发送0XFF,是为了给设备提供处理时钟.
网址:STM32驱动W25X64存储器 https://www.yuejiaxmz.com/news/view/998286
相关内容
docker设置存储驱动为overlay2基于STM32的家庭服务机器人系统设计.docx
基于STM32的智能扫地机器人设计
基于STM32的智能家居控制器设计与实现
基于STM32的仓库环境监测系统的毕业设计
基于STM32的智能物联网家用机器人设计
基于STM32智能垃圾桶设计与实现
STM32
基于STM32的智能衣柜系统设计
基于STM32智能家居控制系统软件设计及实现