Research progress in the interaction between host genetic background and gut microbiota
发布时间:2025-09-17 21:46
绿色建筑是LEED(Leadership in Energy and Environmental Design)等认证体系的一部分 #生活常识# #环保生活Tips# #绿色建筑#
[1] GILL SR, POP M, DEBOY RT, ECKBURG PB, TURNBAUGH PJ, SAMUEL BS, GORDON JI, RELMAN DA, FRASER-LIGGETT CM, NELSON KE. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359 DOI:10.1126/science.1124234. [2] DELGADO-ANDRADE C, PASTORIZA dela CUEVA S, PEINADO MJ, RUFIÁN-HENARES JÁ, NAVARRO MP, RUBIO LA. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products[J]. Food Research International, 2017, 100: 134-142 DOI:10.1016/j.foodres.2017.06.067. [3] GERRITSEN J, HORNUNG B, RENCKENS B, van HIJUM SAFT, MARTINS dos SANTOS VAP, RIJKERS GT, SCHAAP PJ, de VOS WM, SMIDT H. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine[J]. PeerJ, 2017, 5: e3698 DOI:10.7717/peerj.3698. [4] NØRSKOV-LAURITSEN N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans[J]. Clinical Microbiology Reviews, 2014, 27(2): 214-240 DOI:10.1128/CMR.00103-13. [5] MOTATO KE, MILANI C, VENTURA M, ELENA VALENCIA F, RUAS-MADIEDO P, DELGADO S. Bacterial diversity of the Colombian fermented milk "Suero Costeño" assessed by culturing and high-throughput sequencing and DGGE analysis of 16S rRNA gene amplicons[J]. Food Microbiology, 2017, 68: 129-136 DOI:10.1016/j.fm.2017.07.011. [6] DAVILA AM, BLACHIER F, GOTTELAND M, ANDRIAMIHAJA M, BENETTI PH, SANZ Y, TOMÉ D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host[J]. Pharmacological Research, 2013, 68(1): 95-107 DOI:10.1016/j.phrs.2012.11.005. [7] BISHU S. Sensing of nutrients and microbes in the gut[J]. Current Opinion in Gastroenterology, 2016, 32(2): 86-95 DOI:10.1097/MOG.0000000000000246. [8] FAN PX, LIU P, SONG PX, CHEN XY, MA X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model[J]. Scientific Reports, 2017, 7: 43412 DOI:10.1038/srep43412. [9] SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Reviews in Endocrine and Metabolic Disorders, 2019, 20(4): 461-472 DOI:10.1007/s11154-019-09512-0. [10] HILDEBRANDT MA, HOFFMANN C, SHERRILL-MIX SA, KEILBAUGH SA, HAMADY M, CHEN YY, KNIGHT R, AHIMA RS, BUSHMAN F, WU GD. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J]. Gastroenterology, 2009, 137(5): 1716-1724.e1-2 DOI:10.1053/j.gastro.2009.08.042. [11] CANI PD, BIBILONI R, KNAUF C, WAGET A, NEYRINCK AM, DELZENNE NM, BURCELIN R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481 DOI:10.2337/db07-1403. [12] CANI PD, NEYRINCK AM, FAVA F, KNAUF C, BURCELIN RG, TUOHY KM, GIBSON GR, DELZENNE NM. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia[J]. Diabetologia, 2007, 50(11): 2374-2383 DOI:10.1007/s00125-007-0791-0. [13] CANI PD, AMAR J, IGLESIAS MA, POGGI M, KNAUF C, BASTELICA D, NEYRINCK AM, FAVA F, TUOHY KM, CHABO C, WAGET A, DELMÉE E, COUSIN B, SULPICE T, CHAMONTIN B, FERRIÈRES J, TANTI JF, GIBSON GR, CASTEILLA L, DELZENNE NM, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772 DOI:10.2337/db06-1491. [14] VELAGAPUDI VR, HEZAVEH R, REIGSTAD CS, GOPALACHARYULU P, YETUKURI L, ISLAM S, FELIN J, PERKINS R, BORÉN J, ORESIC M, BÄCKHED F. The gut microbiota modulates host energy and lipid metabolism in mice[J]. Journal of Lipid Research, 2010, 51(5): 1101-1112 DOI:10.1194/jlr.M002774. [15] YOON MY, LEE K, YOON SS. Protective role of gut commensal microbes against intestinal infections[J]. Journal of Microbiology, 2014, 52(12): 983-989 DOI:10.1007/s12275-014-4655-2. [16] HYNÖNEN U, PALVA A. Lactobacillus surface layer proteins: structure, function and applications[J]. Applied Microbiology and Biotechnology, 2013, 97(12): 5225-5243 DOI:10.1007/s00253-013-4962-2. [17] ASHIDA N, YANAGIHARA S, SHINODA T, YAMAMOTO N. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis[J]. Journal of Bioscience and Bioengineering, 2011, 112(4): 333-337 DOI:10.1016/j.jbiosc.2011.06.001. [18] MONTALTO M, MAGGIANO N, RICCI R, CURIGLIANO V, SANTORO L, DI NICUOLO F, VECCHIO FM, GASBARRINI A, GASBARRINI G. Lactobacillus acidophilus protects tight junctions from aspirin damage in HT-29 cells[J]. Digestion, 2004, 69(4): 225-228 DOI:10.1159/000079152. [19] 邢肖伟, 陶金华, 江曙, 魏晓燕, 崔祥, 钱大玮, 段金廒. 肠道菌群影响黏膜屏障结构与功能的研究进展[J]. 中国微生态学杂志, 2018, 30(6): 725-730.XING XW, TAO JH, JIANG S, WEI XY, CUI X, QIAN DW, DUAN JA. The impacts of intestinal microflora on the structure and functions of intestinal mucosal barrier: research progress[J]. Chinese Journal of Microecology, 2018, 30(6): 725-730 (in Chinese). [20] CAPORASO JG, LAUBER CL, COSTELLO EK, BERG-LYONS D, GONZALEZ A, STOMBAUGH J, KNIGHTS D, GAJER P, RAVEL J, FIERER N, GORDON JI, KNIGHT R. Moving pictures of the human microbiome[J]. Genome Biology, 2011, 12(5): R50 DOI:10.1186/gb-2011-12-5-r50. [21] ZHANG CH, ZHANG MH, WANG SY, HAN RJ, CAO YF, HUA WY, MAO YJ, ZHANG XJ, PANG XY, WEI CC, ZHAO GP, CHEN Y, ZHAO LP. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice[J]. The ISME Journal, 2010, 4(2): 232-241 DOI:10.1038/ismej.2009.112. [22] 石宝明, 单安山, 佟建明. 寡聚糖对仔猪肠道菌群及生长性能影响的研究[J]. 东北农业大学学报, 2000, 31(3): 261-269.
SHI BM, SHAN AS, TONG JM. Effect of dietary oligosaccharides on growth performance and intestinal microbial populations of piglets[J]. Journal of Northeast Agricultural University, 2000, 31(3): 261-269 (in Chinese). [23] HAENEN D, ZHANG J, SOUZA DA SILVA C, BOSCH G, van der MEER IM, van ARKEL J, van den BORNE JJGC, PÉREZ GUTIÉRREZ O, SMIDT H, KEMP B, MÜLLER M, HOOIVELD GJEJ. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine[J]. The Journal of Nutrition, 2013, 143(3): 274-283 DOI:10.3945/jn.112.169672. [24] 李同洲, 臧素敏, 李德发. 饲用抗生素对仔猪肠道菌群及肠道物质代谢影响的研究[J]. 饲料研究, 1999(5): 3-5.
LI TZ, ZANG SM, LI DF. Study on the effect of feed antibiotics on intestinal flora and intestinal substance metabolism in piglets[J]. Feed Research, 1999(5): 3-5 (in Chinese). [25] DAVENPORT ER, MIZRAHI-MAN O, MICHELINI K, BARREIRO LB, OBER C, GILAD Y. Seasonal variation in human gut microbiome composition[J]. PLoS One, 2014, 9(3): e90731 DOI:10.1371/journal.pone.0090731. [26] WORTHMANN A, JOHN C, RÜHLEMANN MC, BAGUHL M, HEINSEN FA, SCHALTENBERG N, HEINE M, SCHLEIN C, EVANGELAKOS I, MINEO C, FISCHER M, DANDRI M, KREMOSER C, SCHEJA L, FRANKE A, SHAUL PW, HEEREN J. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis[J]. Nature Medicine, 2017, 23(7): 839-849 DOI:10.1038/nm.4357. [27] GARCIA-MAZCORRO JF, DOWD SE, POULSEN J, STEINER JM, SUCHODOLSKI JS. Abundance and short-term temporal variability of fecal microbiota in healthy dogs[J]. Microbiology Open, 2012, 1(3): 340-347 DOI:10.1002/mbo3.36. [28] HUFELDT MR, NIELSEN DS, VOGENSEN FK, MIDTVEDT T, HANSEN AK. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors[J]. Comparative Medicine, 2010, 60(5): 336-347. [29] DIAO H, YAN HL, XIAO Y, YU B, YU J, HE J, ZHENG P, ZENG BH, WEI H, MAO XB, CHEN DW. Intestinal microbiota could transfer host gut characteristics from pigs to mice[J]. BMC Microbiology, 2016, 16(1): 238 DOI:10.1186/s12866-016-0851-z. [30] URAYAMA SI, TAKAKI Y, HAGIWARA D, NUNOURA T. dsRNA-seq reveals novel RNA virus and virus-like putative complete genome sequences from Hymeniacidon sp. sponge[J]. Microbes and Environments, 2020, 35(2): 19132. [31] ROSENBERG E, ZILBER-ROSENBERG I. The hologenome concept of evolution after 10 years[J]. Microbiome, 2018, 6(1): 78 DOI:10.1186/s40168-018-0457-9. [32] ROSENBERG E, KOREN O, RESHEF L, EFRONY R, ZILBER-ROSENBERG I. The role of microorganisms in coral health, disease and evolution[J]. Nature Reviews Microbiology, 2007, 5(5): 355-362 DOI:10.1038/nrmicro1635. [33] NEEFJES J, JONGSMA MLM, PAUL P, BAKKE O. Towards a systems understanding of MHC class I and MHC class II antigen presentation[J]. Nature Reviews Immunology, 2011, 11(12): 823-836 DOI:10.1038/nri3084. [34] KIESER KJ, KAGAN JC. Multi-receptor detection of individual bacterial products by the innate immune system[J]. Nature Reviews Immunology, 2017, 17(6): 376-390 DOI:10.1038/nri.2017.25. [35] RAWLS JF, MAHOWALD MA, LEY RE, GORDON JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection[J]. Cell, 2006, 127(2): 423-433 DOI:10.1016/j.cell.2006.08.043. [36] OCHMAN H, WOROBEY M, KUO CH, NDJANGO JB N, PEETERS M, HAHN BH, HUGENHOLTZ P. Evolutionary relationships of wild hominids recapitulated by gut microbial communities[J]. PLoS Biology, 2010, 8(11): e1000546 DOI:10.1371/journal.pbio.1000546. [37] MOELLER AH, LI YY, MPOUDI NGOLE E, AHUKA-MUNDEKE S, LONSDORF EV, PUSEY AE, PEETERS M, HAHN BH, OCHMAN H. Rapid changes in the gut microbiome during human evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16431-16435. [38] LEY RE, LOZUPONE CA, HAMADY M, KNIGHT R, GORDON JI. Worlds within worlds: evolution of the vertebrate gut microbiota[J]. Nature Reviews Microbiology, 2008, 6(10): 776-788 DOI:10.1038/nrmicro1978. [39] GOODRICH JK, WATERS JL, POOLE AC, SUTTER JL, KOREN O, BLEKHMAN R, BEAUMONT M, van TREUREN W, KNIGHT R, BELL JT, SPECTOR TD, CLARK AG, LEY RE. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799 DOI:10.1016/j.cell.2014.09.053. [40] GOODRICH JK, DAVENPORT ER, BEAUMONT M, JACKSON MA, KNIGHT R, OBER C, SPECTOR TD, BELL JT, CLARK AG, LEY RE. Genetic determinants of the gut microbiome in UK twins[J]. Cell Host & Microbe, 2016, 19(5): 731-743. [41] van de MERWE JP, STEGEMAN JH, HAZENBERG MP. The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn's disease?[J]. Antonie Van Leeuwenhoek, 1983, 49(2): 119-124 DOI:10.1007/BF00393669. [42] STEWART JA, CHADWICK VS, MURRAY A. Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children[J]. Journal of Medical Microbiology, 2005, 54(12): 1239-1242 DOI:10.1099/jmm.0.46189-0. [43] TURNBAUGH PJ, HAMADY M, YATSUNENKO T, CANTAREL BL, DUNCAN A, LEY RE, SOGIN ML, JONES WJ, ROE BA, AFFOURTIT JP, EGHOLM M, HENRISSAT B, HEATH AC, KNIGHT R, GORDON JI. A core gut microbiome in obese and lean twins[J]. Nature, 2009, 457(7228): 480-484 DOI:10.1038/nature07540. [44] YATSUNENKO T, REY FE, MANARY MJ, TREHAN I, DOMINGUEZ-BELLO MG, CONTRERAS M, MAGRIS M, HIDALGO G, BALDASSANO RN, ANOKHIN AP, HEATH AC, WARNER B, REEDER J, KUCZYNSKI J, CAPORASO JG, LOZUPONE CA, LAUBER C, CLEMENTE JC, KNIGHTS D, KNIGHT R, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227 DOI:10.1038/nature11053. [45] XIE HL, GUO RJ, ZHONG HZ, FENG Q, LAN Z, QIN BC, WARD KJ, JACKSON MA, XIA Y, CHEN X, CHEN B, XIA HH, XU CL, LI F, XU X, AL-AAMA JY, YANG HM, WANG J, KRISTIANSEN K, WANG J, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome[J]. Cell Systems, 2016, 3(6): 572-584.e3 DOI:10.1016/j.cels.2016.10.004. [46] ZHAO LL, WANG G, SIEGEL P, HE C, WANG HZ, ZHAO WJ, ZHAI ZX, TIAN FW, ZHAO JX, ZHANG H, SUN ZK, CHEN W, ZHANG Y, MENG H. Quantitative genetic background of the host influences gut microbiomes in chickens[J]. Scientific Reports, 2013, 3: 1163 DOI:10.1038/srep01163. [47] DING JM, ZHAO LL, WANG LF, ZHAO WJ, ZHAI ZX, LENG L, WANG YX, HE C, ZHANG Y, ZHANG HP, LI H, MENG H. Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota[J]. Genetics Selection Evolution, 2016, 48(1): 1-9 DOI:10.1186/s12711-015-0181-x. [48] LI XJ, WANG MY, XUE YH, DUAN DD, LI C, HAN XL, WANG KJ, QIAO RM, LI XL. Identification of microflora related to growth performance in pigs based on 16S rRNA sequence analyses[J]. AMB Express, 2020, 10(1): 1-13 DOI:10.1186/s13568-019-0926-y. [49] YANG H, WU JY, HUANG XC, ZHOU YY, ZHANG YF, LIU M, LIU Q, KE SL, HE MZ, FU H, FANG SM, XIONG XW, JIANG H, CHEN Z, WU ZZ, GONG HF, TONG XK, HUANG YZ, MA JW, GAO J, et al. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs[J]. Nature, 2022, 606(7913): 358-367 DOI:10.1038/s41586-022-04769-z. [50] FAN PX, NELSON CD, DANNY DRIVER J, ELZO MA, PEÑAGARICANO F, JEONG KC. Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity[J]. The ISME Journal, 2021, 15(8): 2306-2321 DOI:10.1038/s41396-021-00925-x. [51] WANG J, THINGHOLM LB, SKIECEVIČIENĖ J, RAUSCH P, KUMMEN M, HOV JR, DEGENHARDT F, HEINSEN FA, RÜHLEMANN MC, SZYMCZAK S, HOLM K, ESKO T, SUN J, PRICOP-JECKSTADT M, AL-DURY S, BOHOV P, BETHUNE J, SOMMER F, ELLINGHAUS D, BERGE RK, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota[J]. Nature Genetics, 2016, 48(11): 1396-1406 DOI:10.1038/ng.3695. [52] LIU XM, TANG SM, ZHONG HZ, TONG X, JIE ZY, DING QX, WANG D, GUO RD, XIAO L, XU X, YANG HM, WANG J, ZONG Y, LIU WB, LIU X, ZHANG Y, BRIX S, KRISTIANSEN K, HOU Y, JIA HJ, et al. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases[J]. Cell Discovery, 2021, 7: 9. [53] TURPIN W, ESPIN-GARCIA O, XU W, SILVERBERG MS, KEVANS D, SMITH MI, GUTTMAN DS, GRIFFITHS A, PANACCIONE R, OTLEY A, XU LZ, SHESTOPALOFF K, MORENO-HAGELSIEB G, PATERSON AD, CROITORU K. Association of host genome with intestinal microbial composition in a large healthy cohort[J]. Nature Genetics, 2016, 48(11): 1413-1417 DOI:10.1038/ng.3693. [54] BONDER MJ, KURILSHIKOV A, TIGCHELAAR EF, MUJAGIC Z, IMHANN F, VILA AV, DEELEN P, VATANEN T, SCHIRMER M, SMEEKENS SP, ZHERNAKOVA DV, JANKIPERSADSING SA, JAEGER M, OOSTING M, CENIT MC, MASCLEE AAM, SWERTZ MA, LI Y, KUMAR V, JOOSTEN L, et al. The effect of host genetics on the gut microbiome[J]. Nature Genetics, 2016, 48(11): 1407-1412 DOI:10.1038/ng.3663. [55] VISSCHER P, WRAY N. Estimating trait heritability[C]. 2008. [56] WRIGHT S. The relative importance of heredity and environment in determining the piebald pattern of Guinea-pigs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1920, 6(6): 320-332. [57] LSTIBŮREK M, BITTNER V, HODGE GR, PICEK J, MACKAY TFC. Estimating realized heritability in panmictic populations[J]. Genetics, 2018, 208(1): 89-95 DOI:10.1534/genetics.117.300508. [58] VISSCHER PM, HILL WG, WRAY NR. Heritability in the genomics era—concepts and misconceptions[J]. Nature Reviews Genetics, 2008, 9(4): 255-266 DOI:10.1038/nrg2322. [59] GOODRICH JK, DAVENPORT ER, WATERS JL, CLARK AG, LEY RE. Cross-species comparisons of host genetic associations with the microbiome[J]. Science, 2016, 352(6285): 532-535 DOI:10.1126/science.aad9379. [60] DAVENPORT ER, CUSANOVICH DA, MICHELINI K, BARREIRO LB, OBER C, GILAD Y. Genome-wide association studies of the human gut microbiota[J]. PLoS One, 2015, 10(11): e0140301 DOI:10.1371/journal.pone.0140301. [61] MENG H, ZHANG Y, ZHAO LL, ZHAO WJ, HE C, HONAKER CF, ZHAI ZX, SUN ZK, SIEGEL PB. Body weight selection affects quantitative genetic correlated responses in gut microbiota[J]. PLoS One, 2014, 9(3): e89862 DOI:10.1371/journal.pone.0089862. [62] DIFFORD GF, LASSEN J, LøVENDAHL P. Genes and microbes, the next step in dairy cattle breeding[C]//The 67th Annual Meeting European Federation of Animal Science. Volume No. 22. Belfast: 2016, 285. [63] FU JY, BONDER MJ, CENIT MC, TIGCHELAAR EF, MAATMAN A, DEKENS JAM, BRANDSMA E, MARCZYNSKA J, IMHANN F, WEERSMA RK, FRANKE L, POON TW, XAVIER RJ, GEVERS D, HOFKER MH, WIJMENGA C, ZHERNAKOVA A. The gut microbiome contributes to a substantial proportion of the variation in blood lipids[J]. Circulation Research, 2015, 117(9): 817-824 DOI:10.1161/CIRCRESAHA.115.306807. [64] BLEKHMAN R, GOODRICH JK, HUANG K, SUN Q, BUKOWSKI R, BELL JT, SPECTOR TD, KEINAN A, LEY RE, GEVERS D, CLARK AG. Host genetic variation impacts microbiome composition across human body sites[J]. Genome Biology, 2015, 16(1): 191 DOI:10.1186/s13059-015-0759-1. [65] KURILSHIKOV A, WIJMENGA C, FU JY, ZHERNAKOVA A. Host genetics and gut microbiome: challenges and perspectives[J]. Trends in Immunology, 2017, 38(9): 633-647 DOI:10.1016/j.it.2017.06.003. [66] BENSON AK, KELLY SA, LEGGE R, MA FR, LOW SJ, KIM J, ZHANG M, OH PL, NEHRENBERG D, HUA KJ, KACHMAN SD, MORIYAMA EN, WALTER J, PETERSON DA, POMP D. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 18933-18938. [67] XU LZ, PATERSON AD, TURPIN W, XU W. Assessment and selection of competing models for zero-inflated microbiome data[J]. PLoS One, 2015, 10(7): e0129606 DOI:10.1371/journal.pone.0129606. [68] QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI JH, XU JM, LI SC, LI DF, CAO JJ, WANG B, LIANG HQ, ZHENG HS, XIE YL, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65 DOI:10.1038/nature08821. [69] LI JH, JIA HJ, CAI XH, ZHONG HZ, FENG Q, SUNAGAWA S, ARUMUGAM M, KULTIMA JR, PRIFTI E, NIELSEN T, JUNCKER AS, MANICHANH C, CHEN B, ZHANG WW, LEVENEZ F, WANG J, XU X, XIAO L, LIANG SS, ZHANG DY, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8): 834-841 DOI:10.1038/nbt.2942. [70] MARCHESI JR, ADAMS DH, FAVA F, HERMES GDA, HIRSCHFIELD GM, HOLD G, QURAISHI MN, KINROSS J, SMIDT H, TUOHY KM, THOMAS LV, ZOETENDAL EG, HART A. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2): 330-339 DOI:10.1136/gutjnl-2015-309990. [71] CLEMENTE JC, URSELL LK, PARFREY LW, KNIGHT R. The impact of the gut microbiota on human health: an integrative view[J]. Cell, 2012, 148(6): 1258-1270 DOI:10.1016/j.cell.2012.01.035. [72] QIN JJ, LI YR, CAI ZM, LI SH, ZHU JF, ZHANG F, LIANG SS, ZHANG WW, GUAN YL, SHEN DQ, PENG YQ, ZHANG DY, JIE ZY, WU WX, QIN YW, XUE WB, LI JH, HAN LC, LU DH, WU PX, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490(7418): 55-60 DOI:10.1038/nature11450. [73] ZELLER G, TAP J, VOIGT AY, SUNAGAWA S, KULTIMA JR, COSTEA PI, AMIOT A, BÖHM J, BRUNETTI F, HABERMANN N, HERCOG R, KOCH M, LUCIANI A, MENDE DR, SCHNEIDER MA, SCHROTZ-KING P, TOURNIGAND C, TRAN van NHIEU J, YAMADA T, ZIMMERMANN J, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Molecular Systems Biology, 2014, 10(11): 766 DOI:10.15252/msb.20145645. [74] ZHANG X, ZHANG DY, JIA HJ, FENG Q, WANG DH, LIANG D, WU XN, LI JH, TANG LQ, LI Y, LAN Z, CHEN B, LI YL, ZHONG HZ, XIE HL, JIE ZY, CHEN WN, TANG SM, XU XQ, WANG XK, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nature Medicine, 2015, 21(8): 895-905 DOI:10.1038/nm.3914. [75] CARMODY RN, GERBER GK, LUEVANO JM Jr, GATTI DM, SOMES L, SVENSON KL, TURNBAUGH PJ. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host & Microbe, 2015, 17(1): 72-84. [76] BLANCO-MÍGUEZ A, FDEZ-RIVEROLA F, SÁNCHEZ B, LOURENÇO A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota[J]. Briefings in Bioinformatics, 2019, 20(3): 1032-1056 DOI:10.1093/bib/bbx156. [77] KNIGHT R, VRBANAC A, TAYLOR BC, AKSENOV A, CALLEWAERT C, DEBELIUS J, GONZALEZ A, KOSCIOLEK T, McCALL LI, McDONALD D, MELNIK AV, MORTON JT, NAVAS J, QUINN RA, SANDERS JG, SWAFFORD AD, THOMPSON LR, TRIPATHI A, XU ZZ, ZANEVELD JR, et al. Best practices for analysing microbiomes[J]. Nature Reviews Microbiology, 2018, 16(7): 410-422 DOI:10.1038/s41579-018-0029-9. [78] MALLICK H, MA SY, FRANZOSA EA, VATANEN T, MORGAN XC, HUTTENHOWER C. Experimental design and quantitative analysis of microbial community multiomics[J]. Genome Biology, 2017, 18(1): 1-16 DOI:10.1186/s13059-016-1139-1. [79] VALLES-COLOMER M, DARZI Y, VIEIRA-SILVA S, FALONY G, RAES J, JOOSSENS M. Meta-omics in inflammatory bowel disease research: applications, challenges, and guidelines[J]. Journal of Crohn's and Colitis, 2016, 10(6): 735-746 DOI:10.1093/ecco-jcc/jjw024. [80] KNIGHTS D, SILVERBERG MS, WEERSMA RK, GEVERS D, DIJKSTRA G, HUANG HL, TYLER AD, van SOMMEREN S, IMHANN F, STEMPAK JM, HUANG H, VANGAY P, AL-GHALITH GA, RUSSELL C, SAUK J, KNIGHT J, DALY MJ, HUTTENHOWER C, XAVIER RJ. Complex host genetics influence the microbiome in inflammatory bowel disease[J]. Genome Medicine, 2014, 6(12): 107 DOI:10.1186/s13073-014-0107-1. [81] FRANK DN, ROBERTSON CE, HAMM CM, KPADEH Z, ZHANG TY, CHEN HY, ZHU W, SARTOR RB, BOEDEKER EC, HARPAZ N, PACE NR, LI E. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases[J]. Inflammatory Bowel Diseases, 2011, 17(1): 179-184 DOI:10.1002/ibd.21339. [82] WACKLIN P, MÄKIVUOKKO H, ALAKULPPI N, NIKKILÄ J, TENKANEN H, RÄBINÄ J, PARTANEN J, ARANKO K, MÄTTÖ J. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine[J]. PLoS One, 2011, 6(5): e20113 DOI:10.1371/journal.pone.0020113. [83] SCHER JU, SCZESNAK A, LONGMAN RS, SEGATA N, UBEDA C, BIELSKI C, ROSTRON T, CERUNDOLO V, PAMER EG, ABRAMSON SB, HUTTENHOWER C, LITTMAN DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis[J]. eLife, 2013, 2: e01202 DOI:10.7554/eLife.01202. [84] le ROY CI, BEAUMONT M, JACKSON MA, STEVES CJ, SPECTOR TD, BELL JT. Heritable components of the human fecal microbiome are associated with visceral fat[J]. Gut Microbes, 2018, 9(1): 61-67 DOI:10.1080/19490976.2017.1356556. [85] LIM MY, YOU HJ, YOON HS, KWON B, LEE JY, LEE S, SONG YM, LEE K, SUNG J, KO G. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome[J]. Gut, 2017, 66(6): 1031-1038 DOI:10.1136/gutjnl-2015-311326. [86] HUGHES DA, BACIGALUPE R, WANG J, RÜHLEMANN MC, TITO RY, FALONY G, JOOSSENS M, VIEIRA-SILVA S, HENCKAERTS L, RYMENANS L, VERSPECHT C, RING S, FRANKE A, WADE KH, TIMPSON NJ, RAES J. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses[J]. Nature Microbiology, 2020, 5(9): 1079-1087 DOI:10.1038/s41564-020-0743-8. [87] ISHIDA S, KATO K, TANAKA M, ODAMAKI T, KUBO R, MITSUYAMA E, XIAO JZ, YAMAGUCHI R, UEMATSU S, IMOTO S, MIYANO S. Genome-wide association studies and heritability analysis reveal the involvement of host genetics in the Japanese gut microbiota[J]. Communications Biology, 2020, 3: 686 DOI:10.1038/s42003-020-01416-z. [88] KURILSHIKOV A, MEDINA-GOMEZ C, BACIGALUPE R, RADJABZADEH D, WANG J, DEMIRKAN A, LE ROY CI, RAYGOZA GARAY JA, FINNICUM CT, LIU XR, ZHERNAKOVA DV, BONDER MJ, HANSEN TH, FROST F, RÜHLEMANN MC, TURPIN W, MOON JY, KIM HN, LÜLL K, BARKAN E, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. Nature Genetics, 2021, 53(2): 156-165 DOI:10.1038/s41588-020-00763-1. [89] TONG MM, McHARDY I, RUEGGER P, GOUDARZI M, KASHYAP PC, HARITUNIANS T, LI XX, GRAEBER TG, SCHWAGER E, HUTTENHOWER C, FORNACE AJ, SONNENBURG JL, McGOVERN DP, BORNEMAN J, BRAUN J. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism[J]. The ISME Journal, 2014, 8(11): 2193-2206 DOI:10.1038/ismej.2014.64. [90] KHACHATRYAN ZA, KTSOYAN ZA, MANUKYAN GP, KELLY D, GHAZARYAN KA, AMINOV RI. Predominant role of host genetics in controlling the composition of gut microbiota[J]. PLoS One, 2008, 3(8): e3064 DOI:10.1371/journal.pone.0003064. [91] HILLHOUSE AE, MYLES MH, TAYLOR JF, BRYDA EC, FRANKLIN CL. Quantitative trait loci in a bacterially induced model of inflammatory bowel disease[J]. Mammalian Genome, 2011, 22(9): 544-555. [92] MCKNITE AM, ELISA PEREZ-MUNOZ M, LU L, WILLIAMS EG, BREWER S, ANDREUX PA, BASTIAANSEN JWM, WANG XS, KACHMAN SD, AUWERX J, WILLIAMS RW, BENSON AK, PETERSON DA, CIOBANU DC. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits[J]. PLoS One, 2012, 7(6): e39191 DOI:10.1371/journal.pone.0039191. [93] LEAMY LJ, KELLY SA, NIETFELDT J, LEGGE RM, MA FR, HUA KJ, SINHA R, PETERSON DA, WALTER J, BENSON AK, POMP D. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice[J]. Genome Biology, 2014, 15(12): 1-20. [94] ORG E, PARKS BW, JOO JWJ, EMERT B, SCHWARTZMAN W, KANG EY, MEHRABIAN M, PAN C, KNIGHT R, GUNSALUS R, DRAKE TA, ESKIN E, LUSIS AJ. Genetic and environmental control of host-gut microbiota interactions[J]. Genome Research, 2015, 25(10): 1558-1569 DOI:10.1101/gr.194118.115. [95] SNIJDERS AM, LANGLEY SA, KIM YM, BRISLAWN CJ, NOECKER C, ZINK EM, FANSLER SJ, CASEY CP, MILLER DR, HUANG YR, KARPEN GH, CELNIKER SE, BROWN JB, BORENSTEIN E, JANSSON JK, METZ TO, MAO JH. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome[J]. Nature Microbiology, 2017, 2: 16221. [96] KEMIS JH, LINKE V, BARRETT KL, BOEHM FJ, TRAEGER LL, KELLER MP, RABAGLIA ME, SCHUELER KL, STAPLETON DS, GATTI DM, CHURCHILL GA, AMADOR-NOGUEZ D, RUSSELL JD, YANDELL BS, BROMAN KW, COON JJ, ATTIE AD, REY FE. Genetic determinants of gut microbiota composition and bile acid profiles in mice[J]. PLoS Genetics, 2019, 15(8): e1008073 DOI:10.1371/journal.pgen.1008073. [97] ELISA PEREZ-MUNOZ M, McKNITE AM, WILLIAMS EG, AUWERX J, WILLIAMS RW, PETERSON DA, CIOBANU DC. Diet modulates cecum bacterial diversity and physiological phenotypes across the BXD mouse genetic reference population[J]. PLoS One, 2019, 14(10): e0224100 DOI:10.1371/journal.pone.0224100. [98] SUZUKI K, MEEK B, DOI Y, MURAMATSU M, CHIBA T, HONJO T, FAGARASAN S. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 1981-1986. [99] BUBIER JA, PHILIP VM, QUINCE C, CAMPBELL J, ZHOU YJ, VISHNIVETSKAYA T, DUVVURU S, BLAIR RH, NDUKUM J, DONOHUE KD, FOSTER CM, MELLERT DJ, WEINSTOCK G, CULIAT CT, O'HARA BF, PALUMBO AV, PODAR M, CHESLER EJ. A microbe associated with sleep revealed by a novel systems genetic analysis of the microbiome in collaborative cross mice[J]. Genetics, 2020, 214(3): 719-733 DOI:10.1534/genetics.119.303013. [100] CHEN CY, HUANG XC, FANG SM, YANG H, HE MZ, ZHAO YZ, HUANG LS. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs[J]. Frontiers in Microbiology, 2018, 9: 2626 DOI:10.3389/fmicb.2018.02626. [101] WEN CL, YAN W, MAI CN, DUAN ZY, ZHENG JX, SUN CJ, YANG N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens[J]. Microbiome, 2021, 9(1): 126 DOI:10.1186/s40168-021-01040-x. [102] FAN B, ONTERU SK, DU ZQ, GARRICK DJ, STALDER KJ, ROTHSCHILD MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs[J]. PLoS One, 2011, 6(2): e14726 DOI:10.1371/journal.pone.0014726. [103] WANG Y, ZHOU P, ZHOU X, FU M, WANG TF, LIU ZH, LIU XL, WANG ZQ, LIU B. Effect of host genetics and gut microbiome on fat deposition traits in pigs[J]. Frontiers in Microbiology, 2022, 13: 925200 DOI:10.3389/fmicb.2022.925200. [104] ZHERNAKOVA A, KURILSHIKOV A, BONDER MJ, TIGCHELAAR EF, SCHIRMER M, VATANEN T, MUJAGIC Z, VILA AV, FALONY G, VIEIRA-SILVA S, WANG J, IMHANN F, BRANDSMA E, JANKIPERSADSING SA, JOOSSENS M, CENIT MC, DEELEN P, SWERTZ MA, STUDY LC, WEERSMA RK, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity[J]. Science, 2016, 352(6285): 565-569 DOI:10.1126/science.aad3369. [105] ROTHSCHILD D, WEISSBROD O, BARKAN E, KURILSHIKOV A, KOREM T, ZEEVI D, COSTEA PI, GODNEVA A, KALKA IN, BAR N, SHILO S, LADOR D, VILA AV, ZMORA N, PEVSNER-FISCHER M, ISRAELI D, KOSOWER N, MALKA G, WOLF BC, AVNIT-SAGI T, et al. Environment dominates over host genetics in shaping human gut microbiota[J]. Nature, 2018, 555(7695): 210-215 DOI:10.1038/nature25973.
网址:Research progress in the interaction between host genetic background and gut microbiota https://www.yuejiaxmz.com/news/view/1308424
相关内容
Research progress in the relationship between gut microbiota and food allergy in childrenResearch progress on the relationship between dietary patterns and common noninfectious chronic diseases
Research progress on the relationship between dietary nutrition, lifestyle and depression
Progress of the Role of Probiotics in the Prevention and Treatment of Allergic Diseases
肠道菌群对人体健康的作用及其应用
Research progress of ecological space and ecological land in China
UNDERSTANDING THE LIFESTYLE IN CHINESE CITIES: A FRAMEWORK BASED ON SPACE
这四种饮食习惯正在悄悄摧毁你的肠道健康!
面向美好生活的“诗意栖居”——旅游情境“家”的研究回顾与展望
Style and Taste: Pursuing the Balance Between the External and the Internal