基于深度学习的垃圾分类方法综述

发布时间:2025-04-24 16:09

学习厨余垃圾的正确分类方法 #生活技巧# #节省生活成本# #生活垃圾分类指南# #生活环保指南#

摘要: 垃圾分类是保护生态环境、促进经济发展的有效措施,利用深度学习进行垃圾分类已成为当前学术界和工业界的研究热点。传统垃圾分类主要由人工进行分拣和分类,存在劳动强度大、分选效率低、工作环境差等缺点,急需智能化、自动化的分类方法来替代。近年来研究人员已经开始初步探索利用深度学习技术进行垃圾分类并提出一些有效的方法。从方法、数据集和研究方向等方面分析深度学习垃圾分类方法的研究现状,介绍不同深度学习模型在垃圾分类中的应用和发展,研究基于ResNet方法、基于DenseNet方法、基于单阶段目标检测方法和基于卷积神经网络与迁移学习相结合方法等多种典型方法的性能和特点并对比其优缺点,对现有的垃圾分类公开数据集进行概述与总结。在此基础上,分析深度学习在垃圾分类领域面临的挑战,并对其发展趋势及未来的研究方向进行展望。

关键词: 垃圾分类, 深度学习, 卷积神经网络, ResNet系统, DensenNet系统, 单阶段目标检测

Abstract: Garbage classification is an effective measure to protect ecological environment and promote economic development.Traditional garbage classification relies heavily on manual work in waste sorting.It is labor-intensive and limited in efficiency, and workers have to suffer from the poor environment.In recent years, intelligent and automated garbage classification methods using deep learning has become a hot research topic.This paper reviews the existing studies of deep learning-based garbage classification from the perspectives of method, dataset and research direction, and introduces the application and development of different deep learning models in garbage classification.The paper analyzes the performance and features of various typical methods, such as the ResNet-based method, DenseNet-based method, single-stage target detection method and the method combining convolution neural network with transfer learning, comparing their advantages and disadvantages.In addition, the paper summarizes the existing public datasets of garbage classification.On this basis, the paper discusses the current challenges faced by deep learning applications in the field of garbage classification, and the development trends as well as future research directions.

Key words: garbage classification, deep learning, Convolutional Neural Network(CNN), ResNet system, DensenNet system, single-stage target detection

中图分类号: 

TP391

网址:基于深度学习的垃圾分类方法综述 https://www.yuejiaxmz.com/news/view/882665

相关内容

基于深度学习的垃圾分类识别系统
深度学习垃圾分类数据集
基于深度学习FasterRCNN模型Restnet50 的生活垃圾智能分类(准确率达84%)
基于深度学习的生活垃圾检测与分类系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
Python基于深度学习机器学习卷积神经网络实现垃圾分类垃圾识别系统(GoogLeNet,Resnet,DenseNet,MobileNet,EfficientNet,Shufflent)
基于深度强化学习的新型电力系统调度优化方法综述
基于YOLOv5深度学习的生活垃圾检测与分类系统:YOLOv5实现与UI界面设计
基于层次分析法的生活垃圾分类收集方案的优化
基于深度学习的生活垃圾检测与分类系统:YOLOv10 实现与 UI 界面设计
毕业设计:基于机器学习的生活垃圾智能分类系统

随便看看