五种传染病的即时检测研究进展
发布时间:2025-05-17 10:18
基因编辑技术CRISPR用于治疗遗传疾病的研究取得突破性进展。 #生活知识# #科技生活# #科技改变生活# #科技医疗#
[1] Pollard, C.A., Morran, M.P. and Nestor-Kalinoski, A.L. (2020) The COVID-19 Pandemic: A Global Health Crisis. Physiological Genomics, 52, 549-557.https://doi.org/10.1152/physiolgenomics.00089.2020 [2] Chen, H., Liu, K., Li, Z. and Wang, P. (2019) Point of Care Testing for Infectious Diseases. Clinica Chimica Acta, 493, 138-147.
https://doi.org/10.1016/j.cca.2019.03.008 [3] Wang, C., Liu, M., Wang, Z., Li, S., Deng, Y. and He, N. (2021) Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today, 37, Article ID: 101092.
https://doi.org/10.1016/j.nantod.2021.101092 [4] Kozel, T.R. and Burnham-Marusich, A.R. (2017) Point-of-Care Testing for Infectious Diseases: Past, Present, and Future. Journal of Clinical Microbiology, 55, 2313-2320.
https://doi.org/10.1128/jcm.00476-17 [5] Mabey, D., Peeling, R.W., Ustianowski, A. and Perkins, M.D. (2004) Diagnostics for the Developing World. Nature Reviews Microbiology, 2, 231-240.
https://doi.org/10.1038/nrmicro841 [6] Sharma, S., Thomas, E., Caputi, M. and Asghar, W. (2022) RT-LAMP Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing. Biosensors, 12, Article 298.
https://doi.org/10.2139/ssrn.4055777 [7] Vanhomwegen, J., Kwasiborski, A., Diop, A., Boizeau, L., Hoinard, D., Vray, M., et al. (2021) Development and Clinical Validation of Loop-Mediated Isothermal Amplification (LAMP) Assay to Diagnose High HBV DNA Levels in Resource-Limited Settings. Clinical Microbiology and Infection, 27, 1858.e9-1858.e15.
https://doi.org/10.1016/j.cmi.2021.03.014 [8] Augustine, R., Hasan, A., Das, S., Ahmed, R., Mori, Y., Notomi, T., et al. (2020) Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology, 9, Article 182.
https://doi.org/10.3390/biology9080182 [9] El Wahed, A.A., Patel, P., Maier, M., Pietsch, C., Rüster, D., Böhlken-Fascher, S., et al. (2021) Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. Analytical Chemistry, 93, 2627-2634.
https://doi.org/10.1021/acs.analchem.0c04779 [10] Behrmann, O., Bachmann, I., Spiegel, M., Schramm, M., Abd El Wahed, A., Dobler, G., et al. (2020) Rapid Detection of SARS-Cov-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ). Clinical Chemistry, 66, 1047-1054.
https://doi.org/10.1093/clinchem/hvaa116 [11] Choi, M.H., Kumara, G.S.R., Lee, J. and Seo, Y.J. (2022) Point-of-Care COVID-19 Testing: Colorimetric Diagnosis Using Rapid and Ultra-Sensitive Ramified Rolling Circle Amplification. Analytical and Bioanalytical Chemistry, 414, 5907-5915.
https://doi.org/10.1007/s00216-022-04156-7 [12] Li, Y., Chen, X., Zhao, Y., Wan, Z., Zeng, Y., Ma, Y., et al. (2021) A Rapid Variant-Tolerant Reverse Transcription Loop-Mediated Isothermal Amplification Assay for the Point of Care Detection of HIV-1. The Analyst, 146, 5347-5356.
https://doi.org/10.1039/d1an00598g [13] Mane, A., Jain, S., Jain, A., Pereira, M., Sirsat, A., Pathak, G., et al. (2022) Diagnostic Performance of Oral Swab Specimen for SARS-CoV-2 Detection with Rapid Point-of-Care Lateral Flow Antigen Test. Scientific Reports, 12, Article No. 7355.
https://doi.org/10.1038/s41598-022-11284-8 [14] Suea-Ngam, A., Bezinge, L., Mateescu, B., Howes, P.D., deMello, A.J. and Richards, D.A. (2020) Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 5, 2701-2723.
https://doi.org/10.1021/acssensors.0c01488 [15] Tan, X., Letendre, J.H., Collins, J.J. and Wong, W.W. (2021) Synthetic Biology in the Clinic: Engineering Vaccines, Diagnostics, and Therapeutics. Cell, 184, 881-898.
https://doi.org/10.1016/j.cell.2021.01.017 [16] Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656.
https://doi.org/10.1038/s41551-021-00760-7 [17] Weng, Z., You, Z., Yang, J., Mohammad, N., Lin, M., Wei, Q., et al. (2023) CRISPR-Cas Biochemistry and CRISPR‐Based Molecular Diagnostics. Angewandte Chemie International Edition, 62, e202214987.
https://doi.org/10.1002/anie.202214987 [18] Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/C2c2. Science, 356, 438-442.
https://doi.org/10.1126/science.aam9321 [19] Gootenberg, J.S., Abudayyeh, O.O., Kellner, M.J., Joung, J., Collins, J.J. and Zhang, F. (2018) Multiplexed and Portable Nucleic Acid Detection Platform with Cas13, Cas12a, and Csm6. Science, 360, 439-444.
https://doi.org/10.1126/science.aaq0179 [20] Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439.
https://doi.org/10.1126/science.aar6245 [21] Lee, R.A., Puig, H.D., Nguyen, P.Q., Angenent-Mari, N.M., Donghia, N.M., McGee, J.P., et al. (2020) Ultrasensitive CRISPR-Based Diagnostic for Field-Applicable Detection of Plasmodium Species in Symptomatic and Asymptomatic Malaria. Proceedings of the National Academy of Sciences of the United States of America, 117, 25722-25731.
https://doi.org/10.1073/pnas.2010196117 [22] Kaminski, M.M., Alcantar, M.A., Lape, I.T., Greensmith, R., Huske, A.C., Valeri, J.A., et al. (2020) A CRISPR-Based Assay for the Detection of Opportunistic Infections Post-Transplantation and for the Monitoring of Transplant Rejection. Nature Biomedical Engineering, 4, 601-609.
https://doi.org/10.1038/s41551-020-0546-5 [23] Hernandez-Garcia, A., Morales-Moreno, M.D., Valdés-Galindo, E.G., Jimenez-Nieto, E.P. and Quezada, A. (2022) Diagnostics of COVID-19 Based on CRISPR-Cas Coupled to Isothermal Amplification: A Comparative Analysis and Update. Diagnostics, 12, Article 1434.
https://doi.org/10.3390/diagnostics12061434 [24] Feng, W., Newbigging, A.M., Tao, J., Cao, Y., Peng, H., Le, C., et al. (2021) CRISPR Technology Incorporating Amplification Strategies: Molecular Assays for Nucleic Acids, Proteins, and Small Molecules. Chemical Science, 12, 4683-4698.
https://doi.org/10.1039/d0sc06973f [25] Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743.
https://doi.org/10.1016/j.tibtech.2018.12.005 [26] Shen, M., Li, N., Lu, Y., Cheng, J. and Xu, Y. (2020) An Enhanced Centrifugation-Assisted Lateral Flow Immunoassay for the Point-of-Care Detection of Protein Biomarkers. Lab on a Chip, 20, 2626-2634.
https://doi.org/10.1039/d0lc00518e [27] Grant, B.D., Anderson, C.E., Williford, J.R., Alonzo, L.F., Glukhova, V.A., Boyle, D.S., et al. (2020) SARS-CoV-2 Coronavirus Nucleocapsid Antigen-Detecting Half-Strip Lateral Flow Assay toward the Development of Point of Care Tests Using Commercially Available Reagents. Analytical Chemistry, 92, 11305-11309.
https://doi.org/10.1021/acs.analchem.0c01975 [28] He, X., Liu, Z., Yang, Y., Li, L., Wang, L., Li, A., et al. (2019) Sensitivity Enhancement of Nucleic Acid Lateral Flow Assays through a Physical-Chemical Coupling Method: Dissoluble Saline Barriers. ACS Sensors, 4, 1691-1700.
https://doi.org/10.1021/acssensors.9b00594 [29] Mukama, O., Wu, J., Li, Z., Liang, Q., Yi, Z., Lu, X., et al. (2020) An Ultrasensitive and Specific Point-of-Care CRISPR/Cas12 Based Lateral Flow Biosensor for the Rapid Detection of Nucleic Acids. Biosensors and Bioelectronics, 159, Article ID: 112143.
https://doi.org/10.1016/j.bios.2020.112143 [30] Ivanov, A.V., Safenkova, I.V., Zherdev, A.V. and Dzantiev, B.B. (2020) Nucleic Acid Lateral Flow Assay with Recombinase Polymerase Amplification: Solutions for Highly Sensitive Detection of RNA Virus. Talanta, 210, Article ID: 120616.
https://doi.org/10.1016/j.talanta.2019.120616 [31] Le, T.T., Chang, P., Benton, D.J., McCauley, J.W., Iqbal, M. and Cass, A.E.G. (2017) Dual Recognition Element Lateral Flow Assay toward Multiplex Strain Specific Influenza Virus Detection. Analytical Chemistry, 89, 6781-6786.
https://doi.org/10.1021/acs.analchem.7b01149 [32] Xie, Q., Wu, Y., Xiong, Q., Xu, H., Xiong, Y., Liu, K., et al. (2014) Advantages of Fluorescent Microspheres Compared with Colloidal Gold as a Label in Immunochromatographic Lateral Flow Assays. Biosensors and Bioelectronics, 54, 262-265.
https://doi.org/10.1016/j.bios.2013.11.002 [33] Wang, W., Yang, X., Rong, Z., Tu, Z., Zhang, X., Gu, B., et al. (2022) Introduction of Graphene Oxide-Supported Multilayer-Quantum Dots Nanofilm into Multiplex Lateral Flow Immunoassay: A Rapid and Ultrasensitive Point-of-Care Testing Technique for Multiple Respiratory Viruses. Nano Research, 16, 3063-3073.
https://doi.org/10.1007/s12274-022-5043-6 [34] Liang, R., Deng, Q., Chen, Z., Xu, X., Zhou, J., Liang, J., et al. (2017) Europium (III) Chelate Microparticle-Based Lateral Flow Immunoassay Strips for Rapid and Quantitative Detection of Antibody to Hepatitis B Core Antigen. Scientific Reports, 7, Article No. 14093.
https://doi.org/10.1038/s41598-017-14427-4 [35] Kropaneva, M., Khramtsov, P., Bochkova, M., et al. (2023)Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. ChemRxiv.
https://doi.org/10.26434/chemrxiv-2023-0fx93 [36] Martiskainen, I., Juntunen, E., Salminen, T., Vuorenpää, K., Bayoumy, S., Vuorinen, T., et al. (2021) Double-Antigen Lateral Flow Immunoassay for the Detection of Anti-HIV-1 and-2 Antibodies Using Upconverting Nanoparticle Reporters. Sensors, 21, Article 330.
https://doi.org/10.3390/s21020330 [37] Chen, H., Park, S., Choi, N., Moon, J., Dang, H., Das, A., et al. (2020) SERS Imaging-Based Aptasensor for Ultrasensitive and Reproducible Detection of Influenza Virus A. Biosensors and Bioelectronics, 167, Article ID: 112496.
https://doi.org/10.1016/j.bios.2020.112496 [38] Kim, K., Kashefi-Kheyrabadi, L., Joung, Y., Kim, K., Dang, H., Chavan, S.G., et al. (2021) Recent Advances in Sensitive Surface-Enhanced Raman Scattering-Based Lateral Flow Assay Platforms for Point-of-Care Diagnostics of Infectious Diseases. Sensors and Actuators B: Chemical, 329, Article ID: 129214.
https://doi.org/10.1016/j.snb.2020.129214 [39] Anfossi, L., Di Nardo, F., Cavalera, S., et al. (2018) Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-Throughput Point-of-Need Testing.
https://doi.org/10.20944/preprints201811.0405.v1 [40] Kim, S., Nhem, S., Dourng, D. and Ménard, D. (2015) Malaria Rapid Diagnostic Test as Point-of-Care Test: Study Protocol for Evaluating the VIKIA® Malaria Ag Pf/pan. Malaria Journal, 14, Article No. 114.
https://doi.org/10.1186/s12936-015-0633-3 [41] Krampa, F.D., Aniweh, Y., Kanyong, P. and Awandare, G.A. (2020) Recent Advances in the Development of Biosensors for Malaria Diagnosis. Sensors, 20, Article 799.
https://doi.org/10.3390/s20030799 [42] Hendriksen, I.C.E., White, L.J., Veenemans, J., Mtove, G., Woodrow, C., Amos, B., et al. (2012) Defining Falciparum-Malaria-Attributable Severe Febrile Illness in Moderate-to-High Transmission Settings on the Basis of Plasma PfHRP2 Concentration. The Journal of Infectious Diseases, 207, 351-361.
https://doi.org/10.1093/infdis/jis675 [43] Li, B., Sun, Z., Li, X., Li, X., Wang, H., Chen, W., et al. (2017) Performance of pfHRP2 versus pLDH Antigen Rapid Diagnostic Tests for the Detection of Plasmodium falciparum: A Systematic Review and Meta-Analysis. Archives of Medical Science, 3, 541-549.
https://doi.org/10.5114/aoms.2017.67279 [44] Li, J., Saidi, A.M., Seydel, K. and Lillehoj, P.B. (2024) Rapid Diagnosis and Prognosis of Malaria Infection Using a Microfluidic Point-of-Care Immunoassay. Biosensors and Bioelectronics, 250, Article ID: 116091.
https://doi.org/10.1016/j.bios.2024.116091 [45] Kim, J., Cao, X.E., Finkelstein, J.L., Cárdenas, W.B., Erickson, D. and Mehta, S. (2019) A Two-Colour Multiplexed Lateral Flow Immunoassay System to Differentially Detect Human Malaria Species on a Single Test Line. Malaria Journal, 18, Article No. 313.
https://doi.org/10.1186/s12936-019-2957-x [46] Reboud, J., Xu, G., Garrett, A., Adriko, M., Yang, Z., Tukahebwa, E.M., et al. (2019) Paper-based Microfluidics for DNA Diagnostics of Malaria in Low Resource Underserved Rural Communities. Proceedings of the National Academy of Sciences of the United States of America, 116, 4834-4842.
https://doi.org/10.1073/pnas.1812296116 [47] Guo, X., Khalid, M.A., Domingos, I., Michala, A.L., Adriko, M., Rowel, C., et al. (2021) Smartphone-Based DNA Diagnostics for Malaria Detection Using Deep Learning for Local Decision Support and Blockchain Technology for Security. Nature Electronics, 4, 615-624.
https://doi.org/10.1038/s41928-021-00612-x [48] Lai, M.Y., Zen, L.P.Y., Abdul Hamid, M.H., Jelip, J., Mudin, R.N., Ivan, V.J.S., et al. (2023) Point-of-Care Diagnosis of Malaria Using a Simple, Purification-Free DNA Extraction Method Coupled with Loop-Mediated Isothermal Amplification-Lateral Flow. Tropical Medicine and Infectious Disease, 8, Article 199.
https://doi.org/10.3390/tropicalmed8040199 [49] Garcia, G.A., Kariyawasam, T.N., Lord, A.R., da Costa, C.F., Chaves, L.B., Lima-Junior, J.d.C., et al. (2022) Malaria Absorption Peaks Acquired through the Skin of Patients with Infrared Light Can Detect Patients with Varying Parasitemia. PNAS Nexus, 1, pgac272.
https://doi.org/10.1093/pnasnexus/pgac272 [50] Kumar, M., Pahuja, S., Khare, P. and Kumar, A. (2023) Current Challenges and Future Perspectives of Diagnosis of Hepatitis B Virus. Diagnostics, 13, Article 368.
https://doi.org/10.3390/diagnostics13030368 [51] 刘珏, 刘民. 我国实现WHO 2030消除乙型肝炎目标的进展与挑战[J]. 中华流行病学杂志, 2019, 40(6): 605-609. [52] Zou, Z., Wang, J., Wang, H., Li, Y. and Lin, Y. (2012) An Integrated Electrochemical Device Based on Immunochromatographic Test Strip and Enzyme Labels for Sensitive Detection of Disease-Related Biomarkers. Talanta, 94, 58-64.
https://doi.org/10.1016/j.talanta.2012.02.046 [53] Martiskainen, I., Talha, S.M., Vuorenpää, K., Salminen, T., Juntunen, E., Chattopadhyay, S., et al. (2020) Upconverting Nanoparticle Reporter-Based Highly Sensitive Rapid Lateral Flow Immunoassay for Hepatitis B Virus Surface Antigen. Analytical and Bioanalytical Chemistry, 413, 967-978.
https://doi.org/10.1007/s00216-020-03055-z [54] Si, J., Li, J., Zhang, L., Zhang, W., Yao, J., Li, T., et al. (2019) A Signal Amplification System on a Lateral Flow Immunoassay Detecting for Hepatitis E‐antigen in Human Blood Samples. Journal of Medical Virology, 91, 1301-1306.
https://doi.org/10.1002/jmv.25452 [55] Zhang, Y., Gao, Y., Zhang, X., Wang, H., Xia, T., Bian, C., et al. (2019) Electrochemical Immunosensor for Hbe Antigen Detection Based on a Signal Amplification Strategy: The Co-Catalysis of Horseradish Peroxidase and Nanoporous Gold. Sensors and Actuators B: Chemical, 284, 296-304.
https://doi.org/10.1016/j.snb.2018.12.157 [56] Zhang, B., Zhu, Z., Li, F., Xie, X. and Ding, A. (2021) Rapid and Sensitive Detection of Hepatitis B Virus by Lateral Flow Recombinase Polymerase Amplification Assay. Journal of Virological Methods, 291, Article ID: 114094.
https://doi.org/10.1016/j.jviromet.2021.114094 [57] Rollin, P.E., Nichol, S.T., Zaki, S., et al. (2015) Arenaviruses and Filoviruses. In: Jorgensen, J.H., et al., Eds., Manual of Clinical Microbiology, Wiley, 1669-1686.
https://doi.org/10.1128/9781555817381.ch97 [58] Chen, X., Zhou, Q., Dong, S., Wang, S., Liu, R., Wu, X., et al. (2021) Multiple Cross Displacement Amplification Linked with Nanoparticles-Based Lateral Flow Biosensor in Screening of Hepatitis B Virus in Clinical Application. Infection and Drug Resistance, 14, 1219-1229.
https://doi.org/10.2147/idr.s297645 [59] Ding, R., Long, J., Yuan, M., Zheng, X., Shen, Y., Jin, Y., et al. (2021) CRISPR/Cas12-based Ultra-Sensitive and Specific Point-of-Care Detection of HBV. International Journal of Molecular Sciences, 22, Article 4842.
https://doi.org/10.3390/ijms22094842 [60] Tian, Y., Fan, Z., Xu, L., Cao, Y., Chen, S., Pan, Z., et al. (2023) CRISPR/Cas13a-Assisted Rapid and Portable HBV DNA Detection for Low-Level Viremia Patients. Emerging Microbes & Infections, 12, e2177088.
https://doi.org/10.1080/22221751.2023.2177088 [61] Terrault, N.A., Lok, A.S.F., McMahon, B.J., Chang, K., Hwang, J.P., Jonas, M.M., et al. (2018) Update on Prevention, Diagnosis, and Treatment of Chronic Hepatitis B: AASLD 2018 Hepatitis B Guidance. Hepatology, 67, 1560-1599.
https://doi.org/10.1002/hep.29800 [62] Seto, W., Lo, Y., Pawlotsky, J. and Yuen, M. (2018) Chronic Hepatitis B Virus Infection. The Lancet, 392, 2313-2324.
https://doi.org/10.1016/s0140-6736(18)31865-8 [63] Zhang, X., Tian, Y., Xu, L., Fan, Z., Cao, Y., Ma, Y., et al. (2022) CRISPR/Cas13-Assisted Hepatitis B Virus Covalently Closed Circular DNA Detection. Hepatology International, 16, 306-315.
https://doi.org/10.1007/s12072-022-10311-0 [64] Makler-Disatham, A., Caputi, M. and Asghar, W. (2024) Development of a Lamp-Based Diagnostic for the Detection of Multiple HIV-1 Strains. Biosensors, 14, Article 157.
https://doi.org/10.3390/bios14040157 [65] Kong, M., Li, Z., Wu, J., Hu, J., Sheng, Y., Wu, D., et al. (2019) A Wearable Microfluidic Device for Rapid Detection of HIV-1 DNA Using Recombinase Polymerase Amplification. Talanta, 205, Article ID: 120155.
https://doi.org/10.1016/j.talanta.2019.120155 [66] Liu, T., Choi, G., Tang, Z., Kshirsagar, A., Politza, A.J. and Guan, W. (2022) Fingerpick Blood-Based Nucleic Acid Testing on a USB Interfaced Device Towards HIV Self-Testing. Biosensors and Bioelectronics, 209, Article ID: 114255.
https://doi.org/10.1016/j.bios.2022.114255 [67] Li, X., Su, B., Yang, L., et al. (2023) Rapid, Point-of-Care Antigen and Molecular Tests Base on CRISPR for Diagnosis of HIV-1 Infection.
https://doi.org/10.21203/rs.3.rs-2711381/v1 [68] Gray, E.R., Bain, R., Varsaneux, O., Peeling, R.W., Stevens, M.M. and McKendry, R.A. (2018) P24 Revisited: A Landscape Review of Antigen Detection for Early HIV Diagnosis. AIDS, 32, 2089-2102.
https://doi.org/10.1097/qad.0000000000001982 [69] Liu, D., Zhang, Y., Zhu, M., Yu, Z., Ma, X., Song, Y., et al. (2020) Microfluidic-Integrated Multicolor Immunosensor for Visual Detection of HIV-1 P24 Antigen with the Naked Eye. Analytical Chemistry, 92, 11826-11833.
https://doi.org/10.1021/acs.analchem.0c02091 [70] Li, F., Zheng, Y., Wu, J., Zhao, L., Shui, L., Pu, Q., et al. (2019) Smartphone Assisted Immunodetection of HIV P24 Antigen Using Reusable, Centrifugal Microchannel Array Chip. Talanta, 203, 83-89.
https://doi.org/10.1016/j.talanta.2019.05.042 [71] Sailapu, S.K., Macchia, E., Merino-Jimenez, I., Esquivel, J.P., Sarcina, L., Scamarcio, G., et al. (2020) Standalone Operation of an EGOFET for Ultra-Sensitive Detection of HIV. Biosensors and Bioelectronics, 156, 112103.
https://doi.org/10.1016/j.bios.2020.112103 [72] Chen, C., Yuan, H., Chen, C., Chien, Y., Sheng, W. and Chen, C. (2021) An Electricity-and Instrument-Free Infectious Disease Sensor Based on a 3D Origami Paper-Based Analytical Device. Lab on a Chip, 21, 1908-1915.
https://doi.org/10.1039/d1lc00079a [73] Sher, M. and Asghar, W. (2019) Development of a Multiplex Fully Automated Assay for Rapid Quantification of CD4+ T Cells from Whole Blood. Biosensors and Bioelectronics, 142, Article ID: 111490.
https://doi.org/10.1016/j.bios.2019.111490 [74] Xiao, W., Xiao, M., Yao, S., Cheng, H., Shen, H., Fu, Q., et al. (2019) A Rapid, Simple, and Low-Cost CD4 Cell Count Sensor Based on Blocking Immunochromatographic Strip System. ACS Sensors, 4, 1508-1514.
https://doi.org/10.1021/acssensors.8b01628 [75] Hwang, S., Yang, J.J., Oh, Y., Ko, D., Sung, H., Cho, Y., et al. (2021) Microparticle-Tagged Image-Based Cell Counting (ImmunoSpin) for CD4 + T Cells. Microchimica Acta, 188, Article No. 431.
https://doi.org/10.1007/s00604-021-05070-y [76] Jacob, S.T., Crozier, I., Fischer, W.A., Hewlett, A., Kraft, C.S., Vega, M.D.L., et al. (2020) Ebola Virus Disease. Nature Reviews Disease Primers, 6, Article No. 13.
https://doi.org/10.1038/s41572-020-0147-3 [77] Hu, J., Jiang, Y., Tang, M., Wu, L., Xie, H., Zhang, Z., et al. (2018) Colorimetric-Fluorescent-Magnetic Nanosphere-Based Multimodal Assay Platform for Salmonella Detection. Analytical Chemistry, 91, 1178-1184.
https://doi.org/10.1021/acs.analchem.8b05154 [78] Hu, J., Jiang, Y., Wu, L., Wu, Z., Bi, Y., Wong, G., et al. (2017) Dual-Signal Readout Nanospheres for Rapid Point-of-Care Detection of Ebola Virus Glycoprotein. Analytical Chemistry, 89, 13105-13111.
https://doi.org/10.1021/acs.analchem.7b02222 [79] Fontes, C.M., Lipes, B.D., Liu, J., Agans, K.N., Yan, A., Shi, P., et al. (2021) Ultrasensitive Point-of-Care Immunoassay for Secreted Glycoprotein Detects Ebola Infection Earlier than PCR. Science Translational Medicine, 13, eabd9696.
https://doi.org/10.1126/scitranslmed.abd9696 [80] Zang, F., Su, Z., Zhou, L., Konduru, K., Kaplan, G. and Chou, S.Y. (2019) Ultrasensitive Ebola Virus Antigen Sensing via 3D Nanoantenna Arrays. Advanced Materials, 31, Article ID: 1902331.
https://doi.org/10.1002/adma.201902331 [81] Na, W., Nam, D., Lee, H. and Shin, S. (2018) Rapid Molecular Diagnosis of Infectious Viruses in Microfluidics Using DNA Hydrogel Formation. Biosensors and Bioelectronics, 108, 9-13.
https://doi.org/10.1016/j.bios.2018.02.040 [82] Barnes, K.G., Lachenauer, A.E., Nitido, A., Siddiqui, S., Gross, R., Beitzel, B., et al. (2020) Deployable CRISPR-Cas13a Diagnostic Tools to Detect and Report Ebola and Lassa Virus Cases in Real-time. Nature Communications, 11, Article No. 4161.
https://doi.org/10.1038/s41467-020-17994-9 [83] Bai, Y.X., Xu, Y.H., Wang, X., et al. (2020) Advances in SARS-CoV-2: A Systematic Review. European Review for Medical & Pharmacological Sciences, 24, 9208-9215. [84] Rothan, H.A. and Byrareddy, S.N. (2020) The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. Journal of Autoimmunity, 109, Article ID: 102433.
https://doi.org/10.1016/j.jaut.2020.102433 [85] Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733.
https://doi.org/10.1056/nejmoa2001017 [86] Broughton, J.P., Deng, X., Yu, G., Fasching, C.L., Servellita, V., Singh, J., et al. (2020) CRISPR-Cas12-Based Detection of SARS-CoV-2. Nature Biotechnology, 38, 870-874.
https://doi.org/10.1038/s41587-020-0513-4 [87] Casati, B., Verdi, J.P., Hempelmann, A., Kittel, M., Klaebisch, A.G., Meister, B., et al. (2022) Rapid, Adaptable and Sensitive Cas13-Based COVID-19 Diagnostics Using ADESSO. Nature Communications, 13, Article No. 3308.
https://doi.org/10.1038/s41467-022-30862-y [88] Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494.
https://doi.org/10.1056/nejmc2026172 [89] de Puig, H., Lee, R.A., Najjar, D., Tan, X., Soenksen, L.R., Angenent-Mari, N.M., et al. (2021) Minimally Instrumented SHERLOCK (miSHERLOCK) for CRISPR-Based Point-of-Care Diagnosis of SARS-CoV-2 and Emerging Variants. Science Advances, 7, eabh2944.
https://doi.org/10.1126/sciadv.abh2944 [90] Badua, C.L.D.C., Baldo, K.A.T. and Medina, P.M.B. (2020) Genomic and Proteomic Mutation Landscapes of SARS-CoV-2. Journal of Medical Virology, 93, 1702-1721.
https://doi.org/10.1002/jmv.26548 [91] Lin, H., Liang, Y., Zou, L., Li, B., Zhao, J., Wang, H., et al. (2022) Combination of Isothermal Recombinase-Aided Amplification and CRISPR-Cas12a-Mediated Assay for Rapid Detection of Major Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. Frontiers in Microbiology, 13, Article 945133.
https://doi.org/10.3389/fmicb.2022.945133 [92] Lee, J., Choi, M., Jung, Y., Lee, S.K., Lee, C., Kim, J., et al. (2021) A Novel Rapid Detection for SARS-CoV-2 Spike 1 Antigens Using Human Angiotensin Converting Enzyme 2 (ACE2). Biosensors and Bioelectronics, 171, 112715.
https://doi.org/10.1016/j.bios.2020.112715 [93] Han, J., Lee, S., Kim, J., Seo, G. and Lee, Y.W. (2022) Sars-cov-2 Spike Protein Detection Using Slightly Tapered No-Core Fiber-Based Optical Transducer. Microchimica Acta, 189, Article No. 321.
https://doi.org/10.1007/s00604-022-05413-3 [94] Wei, H., Zhang, C., Du, X. and Zhang, Z. (2023) Research Progress of Biosensors for Detection of SARS-CoV-2 Variants Based on ACE2. Talanta, 251, Article ID: 123813.
https://doi.org/10.1016/j.talanta.2022.123813 [95] Park, S., Kim, H., Woo, K., Kim, J., Jo, H., Jeong, Y., et al. (2021) SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Letters, 22, 50-57.
https://doi.org/10.1021/acs.nanolett.1c03108 [96] Pickering, S., Batra, R., Merrick, B., Snell, L.B., Nebbia, G., Douthwaite, S., et al. (2021) Comparative Performance of SARS-CoV-2 Lateral Flow Antigen Tests and Association with Detection of Infectious Virus in Clinical Specimens: A Single-Centre Laboratory Evaluation Study. The Lancet Microbe, 2, E461-E471.
https://doi.org/10.1016/s2666-5247(21)00143-9 [97] Guo, J., Chen, S., Tian, S., Liu, K., Ni, J., Zhao, M., et al. (2021) 5G-Enabled Ultra-Sensitive Fluorescence Sensor for Proactive Prognosis of COVID-19. Biosensors and Bioelectronics, 181, Article ID: 113160.
https://doi.org/10.1016/j.bios.2021.113160 [98] Zhang, Z., Cong, Y., Huang, Y. and Du, X. (2019) Nanomaterials-Based Electrochemical Immunosensors. Micromachines, 10, Article 397.
https://doi.org/10.3390/mi10060397 [99] Zeng, R., Qiu, M., Wan, Q., Huang, Z., Liu, X., Tang, D., et al. (2022) Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Analytical Chemistry, 94, 15155-15161.
https://doi.org/10.1021/acs.analchem.2c03606 [100] Ong, D.S.Y. and Poljak, M. (2020) Smartphones as Mobile Microbiological Laboratories. Clinical Microbiology and Infection, 26, 421-424.
https://doi.org/10.1016/j.cmi.2019.09.026 [101] Yadav, S., Sharma, N.N. and Akhtar, J. (2021) Nucleic Acid Analysis on Paper Substrates (NAAPs): An Innovative Tool for Point of Care (POC) Infectious Disease Diagnosis. The Analyst, 146, 3422-3439.
https://doi.org/10.1039/d1an00214g [102] Li, Z., Leustean, L., Inci, F., Zheng, M., Demirci, U. and Wang, S. (2019) Plasmonic-Based Platforms for Diagnosis of Infectious Diseases at the Point-of-Care. Biotechnology Advances, 37, Article ID: 107440.
https://doi.org/10.1016/j.biotechadv.2019.107440
网址:五种传染病的即时检测研究进展 https://www.yuejiaxmz.com/news/view/985281
相关内容
HIV传播风险 | U=U(持续检测不到=没有传染性)研究证据汇总即食肉制品微生物污染及其控制技术研究进展
糖尿病与睡眠研究进展
便携式多疾病核酸检测设备研制成功
中国疾控中心首度表态支持U=U丨持续检测不到HIV病毒=没有传染性
把疾病检测实验室,装进小盒子
老年糖尿病的护理现状及研究进展
HIV检测不到 ≠ 不传播!
植物染在纺织领域的研究进展及应用情况分析
从实验室到现场,便携式微生物检测仪助力即时检测