城市土壤和地表灰尘重金属污染研究进展与展望
发布时间:2025-08-16 03:53
土壤污染可能导致食物中毒和重金属积累 #生活知识# #健康生活# #环境污染与健康#
[1] Bi C J, Zhou Y, Chen Z L, et al. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of the Total Environment, 2018, 619⁃620: 1349-1357. [2] Long Z J, Zhu H, Bing H J, et al. Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China[J]. Journal of Hazardous Materials, 2021, 420. DOI:10.1016/j.jhazmat.2021.126638 [3] Jin Y L, O'Connor D, Ok Y S, et al. Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis[J]. Environment International, 2019, 124: 320-328. DOI:10.1016/j.envint.2019.01.024 [4] Chen R H, Zhang Q R, Chen H Y, et al. Source apportionment of heavy metals in sediments and soils in an interconnected river-soil system based on a composite fingerprint screening approach[J]. Journal of Hazardous Materials, 2021, 411. DOI:10.1016/j.jhazmat.2021.125125 [5] Donado E P, Oliveira M L S, Gonçalves J O, et al. Soil contamination in Colombian playgrounds: effects of vehicles, construction, and traffic[J]. Environmental Science and Pollution Research, 2021, 28(1): 166-176. DOI:10.1007/s11356-020-09965-w [6] Dousova B, Lhotka M, Buzek F, et al. Environmental interaction of antimony and arsenic near busy traffic nodes[J]. Science of the Total Environment, 2020, 702. DOI:10.1016/j.scitotenv.2019.134642 [7] Zheng N, Liu J S, Wang Q C, et al. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China[J]. Science of the Total Environment, 2010, 408(4): 726-733. DOI:10.1016/j.scitotenv.2009.10.075 [8] Dietrich M, O'Shea M J, Gieré R, et al. Road sediment, an underutilized material in environmental science research: a review of perspectives on United States studies with international context[J]. Journal of Hazardous Materials, 2022, 432. DOI:10.1016/j.jhazmat.2022.128604 [9] Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690-700. DOI:10.1016/j.scitotenv.2018.06.068 [10] Wang B, Xia D S, Yu Y, et al. Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geochemical approach[J]. Science of the Total Environment, 2018, 642: 95-104. DOI:10.1016/j.scitotenv.2018.06.050 [11] Yang Z P, Li X Y, Wang Y, et al. Trace element contamination in urban topsoil in China during 2000-2009 and 2010-2019: pollution assessment and spatiotemporal analysis[J]. Science of the Total Environment, 2021, 758. DOI:10.1016/j.scitotenv.2020.143647 [12] Wang S Y, Wang L Q, Huan Y Z, et al. Concentrations, spatial distribution, sources and environmental health risks of potentially toxic elements in urban road dust across China[J]. Science of the Total Environment, 2022, 805. DOI:10.1016/j.scitotenv.2021.150266 [13] Tong R P, Liu J F, Wang W, et al. Health effects of PM2.5 emissions from on-road vehicles during weekdays and weekends in Beijing, China[J]. Atmospheric Environment, 2020, 223. DOI:10.1016/j.atmosenv.2019.117258 [14] Christoforidis A, Stamatis N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece[J]. Geoderma, 2009, 151(3-4): 257-263. DOI:10.1016/j.geoderma.2009.04.016 [15] Chen X X, Cheng X Y, Meng H, et al. Past, present, and future perspectives on the assessment of bioavailability/bioaccessibility of polycyclic aromatic hydrocarbons: a 20-year systemic review based on scientific econometrics[J]. Science of the Total Environment, 2021, 774. DOI:10.1016/j.scitotenv.2021.145585 [16] Chen C M. CiteSpace Ⅱ: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI:10.1002/asi.20317 [17] Zeng W B, Wan X M, Wang L Q, et al. Apportionment and location of heavy metal(loid)s pollution sources for soil and dust using the combination of principal component analysis, Geodetector, and multiple linear regression of distance[J]. Journal of Hazardous Materials, 2022, 438. DOI:10.1016/j.jhazmat.2022.129468 [18] Men C, Liu R M, Xu F, et al. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China[J]. Science of the Total Environment, 2018, 612: 138-147. DOI:10.1016/j.scitotenv.2017.08.123 [19] Padoan E, Romè C, Ajmone-Marsan F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect[J]. Science of the Total Environment, 2017, 601⁃602: 89-98. [20] Li X P, Zhang M, Gao Y, et al. Urban street dust bound 24 potentially toxic metal/metalloids (PTMs) from Xining valley-city, NW China: Spatial occurrences, sources and health risks[J]. Ecotoxicology and Environmental Safety, 2018, 162: 474-487. DOI:10.1016/j.ecoenv.2018.07.006 [21] Bourliva A, Kantiranis N, Papadopoulou L, et al. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (PTEs) in road dusts of Thessaloniki city, Greece: a one-year monitoring period[J]. Science of the Total Environment, 2018, 639: 417-427. DOI:10.1016/j.scitotenv.2018.05.170 [22] Zhou L, Liu G J, Shen M C, et al. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China[J]. Chemosphere, 2022, 302. DOI:10.1016/j.chemosphere.2022.134864 [23] Zhang X X, Zha T, Guo X P, et al. Spatial distribution of metal pollution of soils of Chinese provincial capital cities[J]. Science of the Total Environment, 2018, 643: 1502-1513. DOI:10.1016/j.scitotenv.2018.06.177 [24] Birch G F. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments[J]. Science of the Total Environment, 2023, 854. DOI:10.1016/j.scitotenv.2022.158129 [25] Wang J, Chen Z L, Sun X J, et al. Quantitative spatial characteristics and environmental risk of toxic heavy metals in urban dusts of Shanghai, China[J]. Environmental Earth Sciences, 2009, 59(3): 645-654. DOI:10.1007/s12665-009-0061-1 [26] Tang R L, Ma K M, Zhang Y X, et al. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China[J]. Applied Geochemistry, 2013, 35: 88-98. DOI:10.1016/j.apgeochem.2013.03.016 [27] Solgi E, Oshvandi Z. Spatial patterns, hotspot, and risk assessment of heavy metals in different land uses of urban soils (case study: Malayer city)[J]. Human and Ecological Risk Assessment: An International Journal, 2018, 24(1): 256-270. DOI:10.1080/10807039.2017.1377597 [28] Forghani G, Kelm U, Mazinani V. Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu Smelter, SE Iran[J]. Journal of Geochemical Exploration, 2019, 196: 66-80. DOI:10.1016/j.gexplo.2018.09.012 [29] Trujillo-González J M, Torres-Mora M A, Keesstra S, et al. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses[J]. Science of the Total Environment, 2016, 553: 636-642. DOI:10.1016/j.scitotenv.2016.02.101 [30] He Y, Peng C, Zhang Y, et al. Comparison of heavy metals in urban soil and dust in cities of China: characteristics and health risks[J]. International Journal of Environmental Science and Technology, 2023, 20(2): 2247-2258. DOI:10.1007/s13762-022-04051-9 [31] Pouyat R V, Szlavecz K, Yesilonis I D, et al. Multi-scale assessment of metal contamination in residential soil and soil fauna: a case study in the Baltimore–Washington metropolitan region, USA[J]. Landscape and Urban Planning, 2015, 142: 7-17. DOI:10.1016/j.landurbplan.2015.05.001 [32] Ordóñez A, Álvarez R, De Miguel E, et al. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15years of study[J]. Science of the Total Environment, 2015, 524-525: 93-103. DOI:10.1016/j.scitotenv.2015.04.024 [33] Takaoka M, Yoshinaga J, Tanaka A. Influence of paint chips on lead concentration in the soil of public playgrounds in Tokyo[J]. Journal of Environmental Monitoring, 2006, 8(3): 393-398. DOI:10.1039/b517227f [34] Mielke H W, Gonzales C R, Powell E T, et al. Spatiotemporal dynamic transformations of soil lead and children's blood lead ten years after Hurricane Katrina: New grounds for primary prevention[J]. Environment International, 2016, 94: 567-575. DOI:10.1016/j.envint.2016.06.017 [35] Žibret G. Influences of coal mines, metallurgical plants, urbanization and lithology on the elemental composition of street dust[J]. Environmental Geochemistry and Health, 2019, 41(3): 1489-1505. DOI:10.1007/s10653-018-0228-3 [36] Wang X Y, Liu E F, Lin Q, et al. Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China[J]. Environmental Pollution, 2020, 263. DOI:10.1016/j.envpol.2020.114518 [37] Bourliva A, Christophoridis C, Papadopoulou L, et al. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece[J]. Environmental Geochemistry and Health, 2017, 39(3): 611-634. DOI:10.1007/s10653-016-9836-y [38] Fan P, Lu X W, Yu B, et al. Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust[J]. Environment International, 2022, 160. DOI:10.1016/j.envint.2021.107073 [39] Zhao L S, Yu R L, Yan Y, et al. Bioaccessibility and provenance of heavy metals in the park dust in a coastal city of southeast China[J]. Applied Geochemistry, 2020, 123. DOI:10.1016/j.apgeochem.2020.104798 [40] Chen H, Lu X W, Gao T N, et al. Identifying hot-spots of metal contamination in campus dust of Xi'an, China[J]. International Journal of Environmental Research and Public Health, 2016, 13(6). DOI:10.3390/ijerph13060555 [41] Chen H, Lu X W. Origin and distribution of trace elements in the campus dust of Xi'an, China[J]. Toxicological & Environmental Chemistry, 2019, 101(1-2): 75-90. [42] 李小飞, 陈志彪, 张永贺, 等. 福州市公交枢纽站地表灰尘重金属含量、来源及其健康风险评价[J]. 环境科学研究, 2013, 26(8): 906-912.Li X F, Chen Z B, Zhang Y H, et al. Concentrations, sources and health risk assessments of heavy metals in ground surface dust from urban bus terminals of Fuzhou City[J]. Research of Environmental Sciences, 2013, 26(8): 906-912. [43] 杨孝智, 陈扬, 徐殿斗, 等. 北京地铁站灰尘中重金属污染特征及健康风险评价[J]. 中国环境科学, 2011, 31(6): 944-950.
Yang X Z, Chen Y, Xu D D, et al. Characteristics of heavy metal pollution and health risk assessment in subway dust in Beijing[J]. China Environmental Science, 2011, 31(6): 944-950. [44] 李军, 李开明, 位静, 等. 兰州BRT沿线站台灰尘及其两侧绿化带土壤重金属污染及健康风险评价[J]. 地球与环境, 2022, 50(2): 228-240.
Li J, Li K M, Wei J, et al. Contaminations and health risks of heavy metals from the roadside greenbelt soils and dust along the BRT platform in Lanzhou[J]. Earth and Environment, 2022, 50(2): 228-240. [45] Yu B, Lu X W, Wang L Q, et al. Potentially toxic elements in surface fine dust of residence communities in valley industrial cities[J]. Environmental Pollution, 2023, 327. DOI:10.1016/j.envpol.2023.121523 [46] Zhu X, Yu W X, Li F, et al. Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district[J]. Science of the Total Environment, 2021, 780. DOI:10.1016/j.scitotenv.2021.146357 [47] Hilker N, Jeong C H, Wang J M, et al. Elucidating long-term trends, seasonal variability, and local impacts from thirteen years of near-road particle size data (2006-2019)[J]. Science of the Total Environment, 2021, 774. DOI:10.1016/j.scitotenv.2021.145028 [48] Men C, Liu R M, Wang Q R, et al. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts[J]. Science of the Total Environment, 2018, 637⁃638: 844-854. [49] 赵洪涛, 李叙勇, 尹澄清. 街尘与城市降雨径流污染的关系综述[J]. 生态学报, 2012, 32(24): 8001-8007.
Zhao H T, Li X Y, Yin C Q. Research progress on the relationship of pollutants between road-deposited sediments and its washoff[J]. Acta Ecologica Sinica, 2012, 32(24): 8001-8007. [50] Li H Y, Shi A B, Zhang X R. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park[J]. Journal of Environmental Sciences, 2015, 32: 228-237. DOI:10.1016/j.jes.2014.11.014 [51] Fujiwara F, Rebagliati R J, Marrero J, et al. Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires[J]. Microchemical Journal, 2011, 97(1): 62-67. DOI:10.1016/j.microc.2010.05.006 [52] Guo G H, Zhang D G, Wang Y T. Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu, China[J]. Environmental Science and Pollution Research, 2021, 28(8): 9313-9326. DOI:10.1007/s11356-020-11312-y [53] Jayarathne A, Egodawatta P, Ayoko G A, et al. Intrinsic and extrinsic factors which influence metal adsorption to road dust[J]. Science of the Total Environment, 2018, 618: 236-242. DOI:10.1016/j.scitotenv.2017.11.047 [54] Jayarathne A, Egodawatta P, Ayoko G A, et al. Geochemical phase and particle size relationships of metals in urban road dust[J]. Environmental Pollution, 2017, 230: 218-226. DOI:10.1016/j.envpol.2017.06.059 [55] Zhang J, Hua P, Krebs P. The build-up dynamic and chemical fractionation of Cu, Zn and Cd in road-deposited sediment[J]. Science of the Total Environment, 2015, 532: 723-732. DOI:10.1016/j.scitotenv.2015.06.074 [56] Hou S N, Zheng N, Tang L, et al. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018[J]. Environment International, 2019, 128: 430-437. DOI:10.1016/j.envint.2019.04.046 [57] Bassi Penteado P, Covaes Nogarotto D, Perilo Baltazar J, et al. Inorganic pollution in urban topsoils of Latin American cities: a systematic review and future research direction[J]. Catena, 2022, 210. DOI:10.1016/j.catena.2021.105946 [58] 胡梦珺, 王佳, 张亚云, 等. 基于随机森林评价的兰州市主城区校园地表灰尘重金属污染[J]. 环境科学, 2020, 41(4): 1838-1846.
Hu M J, Wang J, Zhang Y Y, et al. Assessment of heavy metal pollution in surface dust of Lanzhou schools based on random forests[J]. Environmental Science, 2020, 41(4): 1838-1846. [59] Kong S F, Lu B, Bai Z P, et al. Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city[J]. Atmospheric Environment, 2011, 45(25): 4192-4204. DOI:10.1016/j.atmosenv.2011.05.011 [60] Lu X W, Wang L J, Li L Y, et al. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China[J]. Journal of Hazardous Materials, 2010, 173(1-3): 744-749. DOI:10.1016/j.jhazmat.2009.09.001 [61] Zhang M M, Lu X W, Chen H, et al. Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1): 637-646. DOI:10.1007/s10967-014-3300-1 [62] Ali M U, Liu G J, Yousaf B, et al. Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China[J]. Chemosphere, 2017, 181: 111-121. DOI:10.1016/j.chemosphere.2017.04.061 [63] Li K X, Liang T, Wang L Q, et al. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China[J]. Journal of Geographical Sciences, 2015, 25(12): 1439-1451. DOI:10.1007/s11442-015-1244-1 [64] Cao P Q, Fujimori T, Juhasz A, et al. Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana[J]. Chemosphere, 2020, 240. DOI:10.1016/j.chemosphere.2019.124909 [65] Jeong H, Ryu J S, Ra K. Characteristics of potentially toxic elements and multi-isotope signatures (Cu, Zn, Pb) in non-exhaust traffic emission sources[J]. Environmental Pollution, 2022, 292. DOI:10.1016/j.envpol.2021.118339 [66] Sezgin N, Ozcan H K, Demir G, et al. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway[J]. Environment International, 2004, 29(7): 979-985. DOI:10.1016/S0160-4120(03)00075-8 [67] Tang Z W, Chai M, Cheng J L, et al. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China[J]. Ecotoxicology and Environmental Safety, 2017, 138: 83-91. DOI:10.1016/j.ecoenv.2016.11.003 [68] Wahab M I A, Razak W M A A, Sahani M, et al. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur[J]. Science of the Total Environment, 2020, 703. DOI:10.1016/j.scitotenv.2019.135535 [69] Resongles E, Dietze V, Green D C, et al. Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(26). DOI:10.1073/pnas.2102791118 [70] Alves C A, Vicente A M P, Calvo A I, et al. Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres[J]. Atmospheric Environment, 2020, 224. DOI:10.1016/j.atmosenv.2019.117252 [71] Gietl J K, Lawrence R, Thorpe A J, et al. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road[J]. Atmospheric Environment, 2010, 44(2): 141-146. DOI:10.1016/j.atmosenv.2009.10.016 [72] Hagen F H F Z, Mathissena M, Grabiecc T, et al. On-road vehicle measurements of brake wear particle emissions[J]. Atmospheric Environment, 2019, 217. DOI:10.1016/j.atmosenv.2019.116943 [73] Adachi K, Tainosho Y. Characterization of heavy metal particles embedded in tire dust[J]. Environment International, 2004, 30(8): 1009-1017. DOI:10.1016/j.envint.2004.04.004 [74] Thorpe A, Harrison R M. Sources and properties of non-exhaust particulate matter from road traffic: a review[J]. Science of the Total Environment, 2008, 400(1-3): 270-282. DOI:10.1016/j.scitotenv.2008.06.007 [75] Gunawardana C, Goonetilleke A, Egodawatta P, et al. Source characterisation of road dust based on chemical and mineralogical composition[J]. Chemosphere, 2012, 87(2): 163-170. DOI:10.1016/j.chemosphere.2011.12.012 [76] Valotto G, Rampazzo G, Visin F, et al. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy)[J]. Atmospheric Environment, 2015, 122: 596-608. DOI:10.1016/j.atmosenv.2015.10.006 [77] Men C, Liu R M, Xu L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 2020, 388. DOI:10.1016/j.jhazmat.2019.121763 [78] Han Q, Liu Y, Feng X X, et al. Pollution effect assessment of industrial activities on potentially toxic metal distribution in windowsill dust and surface soil in central China[J]. Science of the Total Environment, 2021, 759. DOI:10.1016/j.scitotenv.2020.144023 [79] Kumar M, Furumai H, Kurisu F, et al. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting[J]. Geoderma, 2013, 211⁃212: 8-17. [80] Wang X Y, Birch G F, Liu E F. Traffic emission dominates the spatial variations of metal contamination and ecological-health risks in urban park soil[J]. Chemosphere, 2022, 297. DOI:10.1016/j.chemosphere.2022.134155 [81] Yan G, Mao L C, Jiang B Y, et al. The source apportionment, pollution characteristic and mobility of Sb in roadside soils affected by traffic and industrial activities[J]. Journal of Hazardous Materials, 2020, 384. DOI:10.1016/j.jhazmat.2019.121352 [82] 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716.
Wang Y Q, Bai Y R, Wang J Y. Distribution of urban soil heavy metal and pollution evaluation in different functional zones of Yinchuan city[J]. Environmental Science, 2016, 37(2): 710-716. [83] Zhao L, Xu Y F, Hou H, et al. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China[J]. Science of the Total Environment, 2014, 468⁃469: 654-662. [84] 陈明, 王琳玲, 曹柳, 等. 基于PMF模型的某铅锌冶炼城市降尘重金属污染评价及来源解析[J]. 环境科学, 2023, 44(6): 3450-3462.
Chen M, Wang L L, Cao L, et al. Pollution assessment and source analysis of heavy metals in atmospheric deposition in a lead-zinc smelting city based on PMF model[J]. Environmental Science, 2023, 44(6): 3450-3462. [85] Feng J S, Song N N, Yu Y X, et al. Differential analysis of FA-NNC, PCA-MLR, and PMF methods applied in source apportionment of PAHs in street dust[J]. Environmental Monitoring and Assessment, 2020, 192(11). DOI:10.1007/s10661-020-08679-3 [86] Yang S Y, He M J, Zhi Y Y, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities[J]. Environment International, 2019, 133. DOI:10.1016/j.envint.2019.105239 [87] Ma J J, Yan Y, Chen X J, et al. Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen, China[J]. Ecotoxicology and Environmental Safety, 2021, 228. DOI:10.1016/j.ecoenv.2021.112985 [88] Wang X Y, Liu E F, Yan M X, et al. Contamination and source apportionment of metals in urban road dust (Jinan, China) integrating the enrichment factor, receptor models (FA-NNC and PMF), local Moran's index, Pb isotopes and source-oriented health risk[J]. Science of the Total Environment, 2023, 878. DOI:10.1016/j.scitotenv.2023.163211 [89] Chen H Y, Teng Y G, Li J, et al. Source apportionment of trace metals in river sediments: A comparison of three methods[J]. Environmental Pollution, 2016, 211: 28-37. DOI:10.1016/j.envpol.2015.12.037 [90] Zhao L S, Hu G R, Yan Y, et al. Source apportionment of heavy metals in urban road dust in a continental city of eastern China: using Pb and Sr isotopes combined with multivariate statistical analysis[J]. Atmospheric Environment, 2019, 201: 201-211. DOI:10.1016/j.atmosenv.2018.12.050 [91] Chen Z F, Ding Y F, Jiang X Y, et al. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils[J]. Ecotoxicology and Environmental Safety, 2022, 234. DOI:10.1016/j.ecoenv.2022.113369 [92] Aryal R, Beecham S, Sarkar B, et al. Readily wash-off road dust and associated heavy metals on motorways[J]. Water, Air, & Soil Pollution, 2017, 228(1). DOI:10.1007/s11270-016-3178-3 [93] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价[J]. 环境科学, 2022, 43(1): 1-10.
Peng C, He Y L, Guo Z H, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China[J]. Environmental Science, 2022, 43(1): 1-10. [94] Chang X, Yu Y, Li Y X. Response of antimony distribution in street dust to urban road traffic conditions[J]. Journal of Environmental Management, 2021, 296. DOI:10.1016/j.jenvman.2021.113219 [95] 杨善谋, 黄博. 基于空间分析的土壤重金属形态污染评价比较——以铜陵金属集矿区土壤Cd为例[J]. 农业技术与装备, 2019(8): 9-11.
Yang S M, Huang B. Comparison of soil heavy metal speciation pollution evaluation based on spatial——Taking the soil Cd in Tongling Mining Area as an example[J]. Agricultural Technology & Equipment, 2019(8): 9-11. [96] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. DOI:10.1021/ac50043a017 [97] Quevauviller P, Rauret G, López-Sánchez J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment, 1997, 205(2-3): 223-234. DOI:10.1016/S0048-9697(97)00205-2 [98] 袁宏林, 张恒, 李星星, 等. 西安市街尘中重金属赋存形态和污染特征分析[J]. 生态环境学报, 2015, 24(10): 1682-1688.
Yuan H L, Zhang H, Li X X, et al. Chemical forms and pollution characteristics of heavy metals in urban street dust of Xi'an, China[J]. Ecology and Environmental Sciences, 2015, 24(10): 1682-1688. [99] Liu E F, Wang X Y, Liu H J, et al. Chemical speciation, pollution and ecological risk of toxic metals in readily washed off road dust in a megacity (Nanjing), China[J]. Ecotoxicology and Environmental Safety, 2019, 173: 381-392. DOI:10.1016/j.ecoenv.2019.02.019 [100] Tan M G, Zhang G L, Li X L, et al. Comprehensive study of lead pollution in Shanghai by multiple techniques[J]. Analytical Chemistry, 2006, 78(23): 8044-8050. DOI:10.1021/ac061365q [101] National Environment Protection Council (NEPC). Schedule B5c, Guideline on ecological investigation levels for arsenic, chromium(Ⅲ), copper, DDT, lead, naphthalene, nickel & zinc[R]. Adelaide: NEPC, 2013. [102] 葛峰, 徐坷坷, 刘爱萍, 等. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 2021, 58(2): 331-343.
Ge F, Xu K K, Liu A P, et al. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 2021, 58(2): 331-343. [103] GB36600-2018, 土壤环境质量——建设用地土壤污染风险管控标准[S].
GB36600-2018, Soil environmental quality——Risk control standard for soil contamination of development land[S]. [104] 朱龙, 陈友媛, 苑公静, 等. 城市道路沉积物中重金属生态风险的优化评价[J]. 环境科学研究, 2022, 35(3): 836-844.
Zhu L, Chen Y Y, Yuan G J, et al. Optimal evaluation of ecological risk of heavy metals in urban road sediments[J]. Research of Environmental Sciences, 2022, 35(3): 836-844. [105] 王利军, 卢新卫, 雷凯. 宝鸡市街尘重金属元素含量及其环境风险分析[J]. 土壤通报, 2012, 43(1): 200-205.
Wang L J, Lu X W, Lei K. Analysis of content and environmental risk of heavy metal elements in street dust of Baoji City[J]. Chinese Journal of Soil Science, 2012, 43(1): 200-205. [106] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. DOI:10.1016/0043-1354(80)90143-8 [107] Jayarathne A, Egodawatta P, Ayoko G A, et al. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability[J]. Science of the Total Environment, 2018, 635: 1609-1619. DOI:10.1016/j.scitotenv.2018.04.098 [108] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909-916.
Chen J L, Li R Y, Xie X J, et al. Distribution characteristics and pollution evaluation of heavy metals in greenbelt Soils of Nanjing City[J]. Environmental Science, 2021, 42(2): 909-916. [109] Guo B, Su Y, Pei L, et al. Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: a case study in Xi'an, Shaanxi Province, a northwest city of China[J]. Environmental Science and Pollution Research, 2020, 27(19): 24400-24412. DOI:10.1007/s11356-020-08744-x [110] Iwegbue C M A, Martincigh B S. Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria[J]. Environmental Science and Pollution Research, 2018, 25(13): 12373-12390. DOI:10.1007/s11356-017-1113-9 [111] 熊燕. 土壤质量和土壤重金属污染评价方法综述[J]. 贵阳学院学报(自然科学版), 2021, 16(3): 92-95.
Xiong Y. Review of soil quality and heavy metal pollution assessment in soil[J]. Journal of Guiyang University (Natural Sciences), 2021, 16(3): 92-95. DOI:10.3969/j.issn.1673-6125.2021.03.020 [112] Birch G F, McCready S. Catchment condition as a major control on the quality of receiving basin sediments (Sydney Harbour, Australia)[J]. Science of the Total Environment, 2009, 407(8): 2820-2835. DOI:10.1016/j.scitotenv.2008.12.051 [113] USEPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington: Environmental Protection Agency, 2001. [114] Yousaf B, Amina, Liu G J, et al. The importance of evaluating metal exposure and predicting human health risks in urban–periurban environments influenced by emerging industry[J]. Chemosphere, 2016, 150: 79-89. DOI:10.1016/j.chemosphere.2016.02.007 [115] 韩新宇, 郭晋源, 史建武, 等. 云南5城市道路扬尘PM2. 5中重金属含量表征及健康风险[J]. 环境科学, 2023, 44(6): 3463-3474.
Han X Y, Guo J Y, Shi J W, et al. Characterization and health risk of heavy metals in PM2.5 from road fugitive dust in five cities of Yunnan Province[J]. Environmental Science, 2023, 44(6): 3463-3474. [116] Musa A A, Hamza S M, Kidak R. Street dust heavy metal pollution implication on human health in Nicosia, North Cyprus[J]. Environmental Science and Pollution Research, 2019, 26(28): 28993-29002. DOI:10.1007/s11356-019-06028-7 [117] Tan S Y, Praveena S M, Abidin E Z, et al. Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia)[J]. Environmental Science and Pollution Research, 2018, 25(34): 34623-34635. DOI:10.1007/s11356-018-3396-x [118] 冯康宏, 范缙, Hii L U S, 等. 基于生物可给性的某冶炼厂土壤重金属健康风险评价[J]. 中国环境科学, 2021, 41(1): 442-450.
Feng K H, Fan J, Hii L U S, et al. Human health risk assessment of heavy metals in soil from a smelting plant based on bioaccessibility[J]. China Environmental Science, 2021, 41(1): 442-450. DOI:10.3969/j.issn.1000-6923.2021.01.050 [119] 罗杨, 吴永贵, 段志斌, 等. 基于CiteSpace重金属生物可给性的文献计量分析[J]. 农业环境科学学报, 2020, 39(1): 17-27.
Luo Y, Wu Y G, Duan Z B, et al. Bibliometric analysis of bioaccessibility of heavy metals based on CiteSpace[J]. Journal of Agro-Environment Science, 2020, 39(1): 17-27. [120] Song Y Y, Qi Z H, Zhang Y H, et al. Effects of exposure to ambient fine particulate matter on the heart of diet-induced obesity mouse model[J]. Science of the Total Environment, 2020, 732. DOI:10.1016/j.scitotenv.2020.139304 [121] 马津津, 闫钰, 于瑞莲, 等. 砷形态提取及其在消化道中生物可给性研究[J]. 环境科学与技术, 2020, 43(11): 137-147.
Ma J J, Yan Y, Yu R L, et al. Research on the extraction of arsenic speciation and its bioaccessibility in gastrointestinal tract[J]. Environmental Science & Technology, 2020, 43(11): 137-147. [122] Li S W, Chang M H, Huang X Y, et al. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils[J]. Chemosphere, 2022, 288. DOI:10.1016/j.chemosphere.2021.132655 [123] Fernández-Caliani J C, Giráldez M I, Barba-Brioso C. Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage[J]. Chemosphere, 2019, 237. DOI:10.1016/j.chemosphere.2019.124441 [124] Drahota P, Raus K, Rychlíková E, et al. Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road dust in the historical mining village of Kaňk, Czech Republic[J]. Environmental Geochemistry and Health, 2018, 40(4): 1495-1512. DOI:10.1007/s10653-017-9999-1 [125] Fujimori T, Taniguchi M, Agusa T, et al. Effect of lead speciation on its oral bioaccessibility in surface dust and soil of electronic-wastes recycling sites[J]. Journal of Hazardous Materials, 2018, 341: 365-372. DOI:10.1016/j.jhazmat.2017.07.066 [126] Li S W, Li J, Li H B, et al. Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction[J]. Journal of Hazardous Materials, 2015, 295: 145-152. DOI:10.1016/j.jhazmat.2015.04.011 [127] Li S W, Sun H J, Li H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment International, 2016, 94: 600-606. DOI:10.1016/j.envint.2016.06.022 [128] Wragg J, Cave M, Basta N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the Total Environment, 2011, 409(19). DOI:10.1016/j.scitotenv.2011.05.019 [129] Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental Science & Technology, 2012, 46(11): 6252-6260. [130] Ma X Y, Xia D S, Liu X Y, et al. Application of magnetic susceptibility and heavy metal bioaccessibility to assessments of urban sandstorm contamination and health risks: case studies from Dunhuang and Lanzhou, Northwest China[J]. Science of the Total Environment, 2022, 830. DOI:10.1016/j.scitotenv.2022.154801 [131] Charlesworth S, De Miguel E, Ordóñez A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk[J]. Environmental Geochemistry and Health, 2011, 33(2): 103-123. DOI:10.1007/s10653-010-9325-7 [132] He A N, Li X P, Ai Y W, et al. Potentially toxic metals and the risk to children's health in a coal mining city: an investigation of soil and dust levels, bioaccessibility and blood lead levels[J]. Environment International, 2020, 141. DOI:10.1016/j.envint.2020.105788 [133] 胡佳, 陈建伟, 周宜开. IEUBK模型的应用概况及其本土化的初步探讨[J]. 环境与健康杂志, 2013, 30(7): 655-658.
Hu J, Chen J W, Zhou Y K. IEUBK model and its application in China[J]. Journal of Environment and Health, 2013, 30(7): 655-658. [134] Laidlaw M A S, Mohmmad S M, Gulson B L, et al. Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia[J]. Environmental Research, 2017, 156: 781-790. DOI:10.1016/j.envres.2017.04.040 [135] Zhang X Y, Carpenter D O, Song Y J, et al. Application of the IEUBK model for linking Children's blood lead with environmental exposure in a mining site, south China[J]. Environmental Pollution, 2017, 231: 971-978. DOI:10.1016/j.envpol.2017.08.116 [136] Hogan K, Marcus A, Smith R, et al. Integrated exposure uptake biokinetic model for lead in children: empirical comparisons with epidemiologic data[J]. Environmental Health Perspectives, 1998, 106(S6): 1557-1567. [137] Jiang H H, Cai L M, Wen H H, et al. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals[J]. Science of the Total Environment, 2020, 701. DOI:10.1016/j.scitotenv.2019.134466
网址:城市土壤和地表灰尘重金属污染研究进展与展望 https://www.yuejiaxmz.com/news/view/1241243
相关内容
重毒性铅污染土壤清洁高效修复研究进展矿冶城市土壤重金属源解析与景观分异研究
城市灰尘污染及治理,
全文|上海市土壤污染源头防控行动方案
寒地城市规划研究回顾与展望
废旧电子产品拆解对农田土壤复合污染特征及其调控修复研究
预防+修复=消除土壤污染
城市垃圾污染及街尘清洁研究
国内外灰水处理技术研究进展
通过发展绿色生态经济修复治理农业土壤污染