Research progress on preparation of high entropy
为什么数学老师最喜欢听哪首歌?‘99 Bottles of Beer on the Wall’,因为每瓶啤酒都会让她多出一个方程式。 #生活乐趣# #幽默笑话#
参考文献
[1] Sun Y, Zhang W, Zhang Q, et al. A general approach to high-entropy metallic nanowire electrocatalysts[J]. Matter, 2023, 6(1): 193-205.
[2] Yeh J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006, 31(6): 633-648.
[3] Zhang Y L, Zhang M H, Li J, et al. Research progress of lattice distortion effect in high entropy alloys[J]. Hot Working Technology, 2023, 52(4): 6-11(in Chinese).
张颖隆, 张明赫, 李 杰, 等. 高熵合金中晶格畸变效应的研究进展[J]. 热加工工艺, 2023, 52(4): 6-11.
[4] Liu X, Wang H, Dong L, et al. Molten salt synthesis, morphology modulation, and lithiation mechanism of high entropy oxide for robust lithium storage[J]. Journal of Energy Chemistry, 2023, 86: 536-545.
[5] Liu X, Li X, Li Y, et al. High-entropy oxide: a future anode contender for lithium-ion battery[J]. EcoMat, 2022, 4(6): e12261.
[6] Gao Y, Liu Y, Yu H, et al. High-entropy oxides for catalysis: status and perspectives[J]. Applied Catalysis A, 2022, 631: 118478.
[7] Lin F L, Liu B, Hu C C, et al. Novel high-entropy microwave dielectric ceramics Sr(La0.2Nd0.2Sm0.2Eu0.2Gd0.2)AlO4 with excellent temperature stability and mechanical properties[J]. Journal of the European Ceramic Society, 2023, 43(6): 2506-2512.
[8] Wen Y, Liu Y. Evolution behaviour of the lattice and thermal expansion of a high-entropy fluorite oxide (Zr0.2Ce0.2Hf0.2Y0.2Al0.2)O2-δ during heating and cooling in an inert atmosphere[J]. Ceramics International, 2023, 49(11, Part A): 17245-17254.
[9] Cheng C Y, Yang Y C, Zhong Y Z, et al. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 299-311.
[10] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6(1): 8485.
[11] Stasiak T, Soucek P, Buršíková V, et al. Synthesis and characterization of the ceramic refractory metal high entropy nitride thin films from Cr-Hf-Mo-Ta-W system[J]. Surface and Coatings Technology, 2022, 449: 128987.
[12] Zhao L, Sun X, Zeng X, et al. Synthesis of a new class of high-entropy nitride ceramics and the effects of nitrogen vacancies on their magnetic properties[J]. Applied Surface Science, 2023, 618: 156543.
[13] Moradi M, Hasanvandian F, Bahadoran A, et al. New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction[J]. Electrochimica Acta, 2022, 436: 141444.
[14] Feng L, Fahrenholtz W G, Hilmas G E, et al. Boro/carbothermal reduction co-synthesis of dual-phase high-entropy boride-carbide ceramics[J]. Journal of the European Ceramic Society, 2023, 43(6): 2708-2712.
[15] Zhang Y, Shan L, Chai Y F, et al. Influence of Cr content on sintering, textured structure, and properties of (Hf Zr Ta Cr Ti)B2 high-entropy boride ceramics[J]. Ceramics International, 2023, 49(10): 16029-16037.
[16] Gao Y, Huang L, Tong Z, et al. Low-temperature synthesis of high-entropy (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 powders combined with theoretical forecast of its elastic and thermal properties[J]. Journal of the American Ceramic Society, 2022, 105(10): 6370-6383.
[17] Han L, Chen Y, Zhang H, et al. Low-temperature synthesis of six-principal-component high-entropy transition-metal carbide aerogel thermal insulator[J]. Journal of the American Ceramic Society, 2022, 106(2): 841-847.
[18] Qin Y, Liu J X, Li F, et al. A high entropy silicide by reactive spark plasma sintering[J]. Journal of Advanced Ceramics, 2019, 8(1): 148-152.
[19] Gao Y, Zhang M, Mao Y, et al. Microwave-triggered low temperature thermal reduction of Zr-modified high entropy oxides with extraordinary thermochemical H2 production performance[J]. Energy Conversion and Management, 2022, 252: 115125.
[20] Lal M S, Sundara R. Multifunctional high entropy oxides incorporated functionalized biowaste derived activated carbon for electrochemical energy storage and desalination[J]. Electrochimica Acta, 2022, 405: 139828.
[21] Siddhartha Sairam K V R, Aziz S K T, Karajagi I, et al. A quinary high entropy metal oxide exhibiting robust and efficient bidirectional O2 reduction and water oxidation[J]. International Journal of Hydrogen Energy, 2023, 48(28): 10521-10531.
[22] Chang S C, Chen H Y, Chen P H, et al. Piezo-photocatalysts based on a ferroelectric high-entropy oxide[J]. Applied Catalysis B, 2023, 324: 122204.
[23] Tian L, Zhang Z, Liu S, et al. High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries[J]. Nano Energy, 2023, 106: 108037.
[24] Bérardan D, Franger S, Dragoe D, et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi, 2016, 10(4): 328-333.
[25] Minouei H, Kheradmandfard M, Saboktakin Rizi M, et al. Formation mechanism of high-entropy spinel thin film and its mechanical and magnetic properties: Linking high-entropy alloy to high-entropy ceramic[J]. Applied Surface Science, 2022, 576: 151719.
[26] Zhao G, Cai S, Zhang Y, et al. Reactive flash sintering of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7: microstructural evolution and aqueous durability[J]. Journal of the European Ceramic Society, 2023, 43(6): 2593-2600.
[27] Cheng C, Zhang F, Cheng F, et al. The effect of plasma-assisted ball milling on preparation and sintering behavior of (Zr0.1429Hf0.1429Ce0.1429Y0.2857La0.2857)O2-δ high entropy fluorite oxide[J]. Ceramics International, 2023, 49(8): 13092-13101
[28] Liew S L, Ni X P, Wei F, et al. High-entropy fluorite oxides: atomic stabiliser effects on thermal-mechanical properties[J]. Journal of the European Ceramic Society, 2022, 42(14): 6608-6613.
[29] Kirnbauer A, Spadt C, Koller C M, et al. High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti[J]. Vacuum, 2019, 168: 108850.
[30] Zhu H W, Cheng Y F, Li T, et al. Gemological and spectral characteristics of a new type of emerald synthesized by the hydrothermal method[J]. Rock and Mineral Analysis, 2023, 42(2): 307-316(in Chinese).
朱红伟, 程佑法, 李 婷, 等. 水热法合成的一种新型祖母绿宝石学及光谱学特征[J]. 岩矿测试, 2023, 42(2): 307-316.
[31] Liu X, Yu Y, Li K, et al. Intergrating hollow multishelled structure and high entropy engineering toward enhanced mechano-electrochemical properties in lithium battery[J]. Advanced Materials, 2024: 2312583.
[32] Wang Q, Sarkar A, Li Z, et al. High entropy oxides as anode material for Li-ion battery applications: a practical approach[J]. Electrochemistry Communications, 2019, 100: 121-125.
[33] Wang G, Qin J, Feng Y, et al. Sol-gel synthesis of spherical mesoporous high-entropy oxides[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45155-45164.
[34] Mao A, Xiang H Z, Zhang Z G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J]. Journal of Magnetism and Magnetic Materials, 2019, 484: 245-252.
[35] Talluri B, Yoo K, Kim J. High entropy spinel metal oxide (CoCrFeMnNi)3O4 nanoparticles as novel efficient electrocatalyst for methanol oxidation and oxygen evolution reactions[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106932.
[36] Chen T Y, Wang S Y, Kuo C H, et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(41): 21756-21770.
[37] Nie S, Wu L, Zhao L, et al. Entropy-driven chemistry reveals highly stable denary MgAl2O4-type catalysts[J]. Chem Catalysis, 2021, 1(3): 648-662.
[38] Liu S G, Meng B, Li Z L, et al. Electrochemical performance of chemical prelithiated Lix(Mg, Ni, Zn, Cu, Co)1-xO high-entropy oxide as anode material for lithium ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 743-753 (in Chinese).
刘树港, 蒙 波, 李政隆, 等. Li x(MgNiZnCuCo)1-xO高熵氧化物负极材料电化学储锂特性研究[J]. 储能科学与技术, 2023, 12(3): 743-753.
[39] Deng C, Wu P, Li H, et al. Engineering polyhedral high entropy oxide with high-index facets via mechanochemistry-assisted strategy for efficient oxidative desulfurization[J]. Journal of Colloid and Interface Science, 2023, 629: 569-580.
[40] Lin Y, Biesuz M, Bortolotti M, et al. Impact of reducing conditions on the stabilization of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high-entropy oxide[J]. Ceramics International, 2022, 48(20): 30184-93010.
[41] Lou Y, Guan L, Wang Y, et al. Synthesis of (MgCoNiCuZn)O high-entropy oxide composites by microwave heating[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(2): 132.
[42] Li W G, Liu D G, Wang K W, et al. High entropy oxide ceramics (MgCoNiCuZn)O: flash sintering synthesis and properties[J]. Journal of Inorganic Materials, 2022, 37(12): 1289-1294(in Chinese).
李汪国, 刘佃光, 王珂玮, 等. 闪烧合成高熵氧化物陶瓷(MgCoNiCuZn)O的性能[J]. 无机材料学报, 2022, 37(12): 1289-1294.
[43] Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 3400.
[44] Phakatkar A H, Saray M T, Rasul M G, et al. Ultrafast synthesis of high entropy oxide nanoparticles by flame spray pyrolysis[J]. Langmuir, 2021, 37(30): 9059-9068.
[45] Mao A, Xiang H Z, Zhang Z G, et al. A new class of spinel high-entropy oxides with controllable magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 165884.
[46] He L, Kang H, Hou G, et al. Low-temperature synthesis of nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution reaction[J]. Chemical Engineering Journal, 2023, 460: 141675.
[47] Aydinyan S, Kirakosyan H, Sargsyan A, et al. Solution combustion synthesis of MnFeCoNiCu and (MnFeCoNiCu)3O4 high entropy materials and sintering thereof[J]. Ceramics International, 2022, 48(14): 20294-20305.
[48] Wei J, Rong K, Li X, et al. Deep eutectic solvent assisted facile synthesis of low-dimensional hierarchical porous high-entropy oxides[J]. Nano Research, 2022, 15(3): 2756-2763.
[49] Jia Y G, Shao X, Cheng J, et al. Preparation and lithium storage performance of pseudocapacitance-controlled perovskite high-entropy oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 anode materials[J]. Chemical Journal of Chinese Universities, 2022, 43(8): 20220157(in Chinese).
贾洋刚, 邵 霞, 程 婕, 等. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157.
[50] Shaw S K, Kumari P, Sharma A, et al. Assessment of ionic site distributions in magnetic high entropy oxide of (Mn0.2Fe0.2Co0.2Ni0.2Zr0.2)3O4 and its catalytic behaviour[J]. Physica B, 2023, 652: 414653.
[51] Kheradmandfard M, Minouei H, Tsvetkov N, et al. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications[J]. Materials Chemistry and Physics, 2021, 262: 124265.
[52] Meng Z, Gong X, Xu J, et al. A general strategy for preparing hollow spherical multilayer structures of oxygen-rich vacancy transition metal oxides, especially high entropy perovskite oxides[J]. Chemical Engineering Journal, 2023, 457: 141242.
[53] Liu Z, Xu J, Zhang F, et al. Defect-rich high-entropy oxide nanospheres anchored on high-entropy MOF nanosheets for oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14622-14632.
[54] Okejiri F, Fan J, Huang Z, et al. Ultrasound-mediated synthesis of nanoporous fluorite-structured high-entropy oxides toward noble metal stabilization[J]. iScience, 2022, 25(5): 104214.
[55] Liu J, Ma C, Wang L, et al. Single-phase formation mechanism and dielectric properties of sol-gel-derived Ba(Ti0.2Zr0.2Sn0.2Hf0.2Ce0.2)O3 high-entropy ceramics[J]. Journal of Materials Science & Technology, 2022, 130: 103-111.
[56] Yang X, Wang H, Song Y, et al. Low-temperature synthesis of a porous high-entropy transition-metal oxide as an anode for high-performance lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2022, 14(23): 26873-26881.
[57] Xu H, Dang L, Yan J, et al. Preparation of a nano-size (La0.2Nd0.2Sm0.2Sr0.2Ba0.2)Co0.2Fe0.8O3-δ/SDC high-entropy oxide composite cathode[J]. Materials Letters, 2023, 338: 134029.
[58] Patra J, Nguyen T X, Tsai C C, et al. Effects of elemental modulation on phase Purity and electrochemical properties of Co-free high-entropy spinel oxide anodes for lithium-ion b atteries[J]. Advanced Functional Materials, 2022, 32(17): 2110992.
[59] Nguyen T X, Patra J, Chang J K, et al. High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance[J]. Journal of Materials Chemistry A, 2020, 8(36): 18963-18973.
[60] Guo H, Shen J, Wang T, et al. Design and fabrication of high-entropy oxide anchored on graphene for boosting kinetic performance and energy storage[J]. Ceramics International, 2022, 48(3): 3344-3350.
[61] Meisenheimer P B, Kratofil T J, Heron J T. Giant enhancement of exchange coupling in entropy-stabilized oxide heterostructures[J]. Scientific Reports, 2017, 7(1): 13344.
[62] Sun S, Yang Z, Qiu N, et al. A rocksalt-structure high entropy oxide (AlCrFeNiMn)O film with room-temperature ferromagnetism[J]. Journal of Magnetism and Magnetic Materials, 2021, 538: 168271.
[63] Miao K, Jiang W, Chen Z, et al. Hollow-structured and polyhedron-shaped high entropy oxide toward highly active and robust oxygen evolution reaction in a full pH range[J]. Advanced Materials, 2024, 36: 2308490.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}基金
国家自然科学基金地区联合重点项目(U23A20559);武汉市知识创新专项项目(2023020201010131)
{{custom_fund}}网址:Research progress on preparation of high entropy https://www.yuejiaxmz.com/news/view/1299596
相关内容
Research progress on the relationship between dietary nutrition, lifestyle and depression2020 ASLA RESEARCH AWARD OF HONOR: Particulate Matter Mitigation Through Urban Green Infrastructure: Research on Optimization of Block
Research progress on the quality of life of the elderly and its influencing factors
Research progress on the relationship between dietary patterns and common noninfectious chronic diseases
Research progress of ecological space and ecological land in China
Research progress on healthy lifestyle assessment tools
Research progress on the application of clinical nursing decision
Research progress on patient
Application and research progress of Individual and Family Self
Review on the control and mitigation strategies of lake cyanobacterial blooms